
A D— A 036 106 POLYTECHNIC INST OF NEW YORK BROOKLYN DEPT OF ELECTR——FTC F/S 9/2
EFFECT OF MANPOWER DEPLOYMENT AND BUG GENERATION ON SOFTWARE ER—— FTCfU)
JAN 77 M L SHOOMAN, S NATARAJAN F30602—74—C—029k

UNCLASSIF IED PO LY— E E/EP— 7 6—00 7 RA D C— TR —76—400 NL

• _ _
In’

B
_ _

_ _ _ _ _ _

In _I
I

END
DATE

FIE_ Mr V

3 -
_7_7

• I o : :L~L

•~
112.0

. •

HIl I.8
125 II 14 111111.6
___ II

CD

I

-~ - -. . -.~~~~~~ -—- -

I

_______________________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I

UNCLASSIFIED
SECURITY C SSIFICATION OF tH IS PAGE (Wl...i Dai. EnI.r.d)

EPORT DOCUMENTAT$0P4 PAGE READ INSTRUCT IONS
BEFORE COMPLETIN G FORM

3.~~~~~~~~I(NT S CATALOG P4UMW(5
~

GOVT ACCE SSION NO

j
~~

S RORT & PE~~ OO ERED

~~~~~~~~~~~~~~~~~ 

° ___________________

interim kep~ rt. 
1’EFFECT OF ~~NPOWER~PEPLOYMENT AND JU~~~~~~~~ TI\~~~~ 

1 Jul 7 5 — ~% Jun 7~~ ~4.-~~N SOFTWARE IRROR ~ ODELS . 
__________________________ 

~~~~~~ NL*MWEI!


R GRANT NUMSERI .)

Q
~~~~~~ 

~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~
H. L./Shooman I
S./Nataraj an ( 

~~~~~~~~~~~~~~~ ~~~~~~~~~
!4-c_Ø2 9

~~
’ ‘— .

I. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMEN T. PROJECT . TASK
AREA & *05

Polytechnic Institute of New York
333 Jay Street

~~~~~ __________________________

Brooklyn NY 11201 
___________________________

Rome Air Development Center (ISIS) Jan~~~~ ~~
( “

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPflRT bA

Grif f iss AFB NY 13441 T,
~~~ N U M B E R  OF PAGES

77
14. MONITORING AGENCY NAME C AD RESSOI dIfi.r..i,I iron, Controllin4 Olfic.) IS. SECURITY CLASS. (of thia r.porf)

UNCLASSIFIED
Same

(~~~~4 II1
N/A

IS.. OECLASS I ’ ICAT ION / DOW NG RAO ING
SCHEDULE

$0. DISTRICUTION STATEMENT (of hi. R.porl)

Approved for public release; distribution unlimited.

17. OIST RI$UTION STATEMENT (of 1,. .batract .nt.r.d in Block 20, If diff.rwt iron, R.port)

Same

~~~~~

II. SUPPLEMENTARY NOTES
RADC Proj ect Engineer~
Capt Alan N. Sukert (ISIS)

IC. KEY WORDS (Conlln u. on r.v•raa aid. if n.c.a.a~y ond id.nhify by block ntm.b.r)

Software Error Modeling Software Reliability
Error Correction Model Software Debugging Cost Model
Error Generation Model

~O. A BSTRA CT (Confinu. on c~r•,a• aid. if n.c..aary ,d id.nilfr by block numb.,)

Early software error models by Shooman and Jelinski—Moranda related the number
of errors in a large software system to the rate of error removal. Expressions
for the number of remaining errors as the software undergoes debugging were
formulated and additional assumptions were made to relate the number of residua
errors to the operational system reliability. One of the key assumptions of
the above models was that the sum of the errors removed and those remaining in

I the program is constant. ‘-~~~~~~

J 
DO ~~~ 1473 EDITION OP 1 N0V 05 I)OSSOL ETE 

(con t ’d)

UNCLASSIFIED 4
ECURITY CLASSI FICATION OF THIS PAGE (R?i.n bal. L,fm*~~

~~~ 
g 917

_ __ A .
_ _ _

— —~~~~~~ —— - -.. — - . ~— — - ~-—-~ ________________ — ~~~~~~~~~~~~ —
-
~~~~~~~~~~~~~~~~

—.— 
~~~~~~~~~~~~~~~~~ . —. - —,~~~—~~


- ~~~~~~~~~~~~~ — —
~~~ 

- —r -—- , 

~~~~~~~~~~~~~~~~~~~~~~~~ 
, ,~~~~~~~~~~-~~~ --.-

.
~~~ 

- , - --.
~~~~- - - - - - —_ -

UNCLASSIFIED
SECURITY CLASSI FICATION OF THIS PAOI(ITh.n Sal. Znt.t.d)

his report adds a major refinement to the above models by introducing the
possibility of error generation during debugging. In this refinement the
error generation terms are modeled in several different ways: proportional
to the number of detected errors, corrected errors, the number of remaining
errors, or some function of these effects. The correction rate is assumed
to be a function of the manpower deployed on the project, thus permitting the
use of the model to investigate optimum manpower deployment strategies. The
effects on the economics of debugging due to error growth have also been
analyzed.

UNCLASSIFIED
SECURITY CLASSIFICA TION OP 1HIS PAGE$’IPhon Data Enf...d)

-,-,

~

.-

~

--.

~

-- --- - - - - - - - - -~~~~~~~ -~~~~~~~~~—

ABSTRACT

Several previous models in the literature have discussed how the nurn -
ber of errors in a large software system is related to the rate of error re-
moval. In 197 1 Shooman, and Jelinski and Moranda proposed similar Prob-
abilistic Models for the removal rate of software errors during software
development. The models proposed by Shoornan were based on error da ta
on 7 diffe rent large ope rating systems and application programs and col-
lec ted by Hesse, and these models also fit the data of Akiyama which was
collected on small programs. Expressions for the number of remaining
er r ors as the software undergoe s debugging we re formulated and addit ional
assumptions were made to rela te the number of residual errors to the op-
erational system reliability.

One of the key assumptions In the above models was that the sum of the
er ro r s removed and those rema ining in the program is a constant. Thus ,
if we can es timate the initial number of errors in the system at the start of
debugging and keep careful records of those removed we have a good esti -~mate of the number of remaining errors. In 1 973 Shooman described a test
procedure for estimating the initial number of errors.

In this work we add a major refi nement to the above models by intro-
ducing the possibility of error generation during debugg ing. A generated
error is due to one of two causes; (1) a bug whose correction is invalid
and furthe r debugging on the same statements is essential, (2) a new bug
which is ge nerated as the result of the correction of a different error. The
error gene ration terms are modeled In several diffe rent ways : proportional
to the number of de tected errors, correc ted e r rors, the numbe r of remain-
ing e r ro r s, or some function of these effects. The correction rate is as-
sumed to be a function of the manpower deployed on the projec t, thus, one
can use the model to investigate optimum manpower deployment strate gies.
The effects on the economic s of debugging due to error growth have also
been analyzed.

iii

_ -- . - -~~~~~~~~- .-.- ———b-- ~~~~~~~~~~~~~~~~~~~~~~~~

C ONTENTS

Chapte r Pag~

I Introduction I

2 Summary of Existing Models 3
2. 1 Intr oduction 3
2.2 Error Decay Model 3
2. 3 Reliability Model 4
2. 4 Summary 6

3 Surve y of Debugging Data 7

3. 1 Introduction 7
3. 2 Large Program Data 7
3. 3 Errors removed proportional to errors

remaining 7
3. 4 Debugging Effort 8

4 Error Gene ration Model 27
4. 1 Introduction 27
4. 2 Model for Generated Errors 27
4. 3 Contradictions and Basis for a Reformulated

Model 30

5 E rror Correction M odel

5. 1 Introduction 33
5. 2 A Two-Phase Model 33
5. 3 A Manpower Limited Model 34
5.4 Summary 38

6 Debugging Cost Models 43
6. 1 Introduction 43
6. 2 Programming Economics without Penalty 43
6. 3 Economics with Penalty 45 —

6. 4 Summary 47

7 Conclusion 49
7.1 Summary 49
7. 2 Suggestions for Fur the r Work 49
Appendix I , Summary of Basic Models 50
Appendix II , Flowcharts and Program Listing 52

References 75

—

iv

L.~ . .~~~~~~~ -~~ -— —— —. -- —~~~~± - - -‘ - - - -—-- -- —~~~-~~~~~~~
- -

~~~~~
-- -.-



- ~~~~~~~~- - - . .~~~~~~ 
-.-‘

~~~~~~-- -~~~ —~~~---- -—------ --.--— ~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-..-..S~~~. ,-  — — - -.- -~~~~

LIST OF FIGURES

Title
- . Page

3. 1 Normalized er ror rate versus debugg ing time for
three Supervisory programs 13

3. 2 Normalized er ror rate versus debugg ing time f or
four A pplicati on programs 14

3. 3 Cumulative error curve for Supervisory System A
given in Fig. 3.1. 15

3. 4 Cumula tive e r ror curve s for some of the sys tems
In Figs, 3.1 and 3 . 2 16

3. 5a Er ror rate curve and cumulative error curve for
Supervisory A of Fig. 3. 1 17

3. 5b Error rate curve and cumulative error curve for
Supervisory B of Fig. 3. 1 18

3. 5c Error rate curve and cumulative error curve for
Supervisory C of Fig. 3. 1 19

3. Sd Error rate curve and cumulative error curve for
Application A of Fig. 3. 2 20

3. 5e Error rate curve and cumulative er ror curve for
Application B of Fig. 3. 2 21

3. 51 Error rate curve and cumulative er ror curve for
Applica tion C of Fig. 3. 2 22

3. 6 Hypothetical e r ror mode l, based on the profile of
curve s in Figs. 3.3 and 3 .5 23

3. 7a Worki ng time expended in debugging as observed
at Bell Labs 24

3. 7b Compute r time expended in debugg ing as observed
at Bell Labs . 25

3. 8 Cumulative curve s on the occurrence of bugs for
each module of SAMPLE 26

4. 1 CumulatIve errors debugged versus months of
debugging 3 1

4. 2 The mode! developed under the assumptions of
Case 4, Table A-I , Appendix I 32

5. 1 Remaining error plotted as a function of months of
debugg ing 39

5. 2 Unstabt e model controlled subsequently 40 S

5. 3 The controlled model 41
5. 4 The oscillatory model 42

6. 1 Demarcation between debugging and rewriting reg ions 48

V

. S- . — - --— -.-—-—--—-———-S - - - — - --——5-- 1
- -—--5----- - - - . 5- - . - - 5 .—----- ---- - --~~- ~~ —~~- -~~

— ~ — — —, . .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ .5 .---

’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -S -S.- -——. ~~~~~ ~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _
LIST OF FIGURES (continued)

Figure Title Page

AZ. 1 The system flowchart 52
AZ. 2 Part 1 of the flowchart for case 1 53
AZ. 3 Pa rt 2 of the flowchart for case 1 54
AZ. 4 Pa rt 1 of the flowcha rt for case 2 55
AZ. 5 Pa rt 2 of the flowcha rt for case 2 56
AZ. 6 Part 1 of the flowchart for case 3 57
AZ. 7 Part 2 of the flowchart for case 3 58
AZ. 8 Part 3 of the flowchart for case 3 59
AZ. 9 Part 1 of the flowchart for case 1 which is

• 
. compatible with the computer program 60

AZ . 10 Part Z of the flowchart for case 1 which is
compatible with the computer program 61

.

5

(

I

vi

II__ - _~._-.- . 5 . -- - . .5--- .—~~-----~ -.——-- -~~~~ S . S  - - . -
--S .--. - 5— ~~--~~ --— S..



.‘~~ -~~~~~~— _____

LIST OF TABLES

Table Title Page

3. I Change data for seven different programs 1 0

3. 2 SAMPLE’s str ucture and scale of each module 11

3. 3 Relation between the bugs and the nature of
program 12

A - I  Summary of error  models 50

A-2 Correspondence between Actual Parameters 62
and Program Parameters

I-
1 .

I
vii

I
_ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _



CHAPTER 1

INTRODUCTION

The concept of reliability as applied to the performance of computer
prog rams is in its infancy. Software package s with an eve r increasing
degree of complexity have emerged in the last decade. It is therefore im-
perative to have highly reliable software systems when large software
packages are required to perform complex, real-time operations as, for
example, in the case of a moonlanding mission.

The theory of Software Reliability differs from that of Hardware Relia-
bility in that system failure is not due to part failure s (which are due to a
var iety of causes) but is caused by software bugs which are really latent
des ign errors. Once a software defect is properly fixed it is in general
fixed for all time. Failure usually occurs only when a program is exposed
to an environment that it was not designed or tested for. The large num- 

S

ber of possible states of a program and its inputs make perfect compre-
hension of the program requirements and implementation and complete test-
ing of the program generall y impossible. Thus Software Reliability is es-
sentially a measure of the confidence we have in the design and it’s ability
to function prope rly in all environments it is expecte d to be subjected to.
In the life cycle of software the re are gene rally one or more test phases
dur ing which reliability improve s as errors  are identified and corrected.
The f i rs t  few months of operation may include either : (1) a non—growth opera-
tional phase during which fur ther corrections are not made (f or practical
and economic reasons ) and reliability is constant, or (2) furthe r debugging
and correc tion of e r rors  as they occur which essentially amounts to the use
of early operation as a final debugging test.

Reliability predictions are made based on the estimation of the number
of errors present in a program. In Chapte r 2 is discussed some of the
pioneering work r i_ 3 1 done in this field. The approach used there was to
study the debugging history of previous programs similar to the one in
question. From these one determined constants for the model and made
predictions in the initial planning stages of the system reliability and the
required de bugging. Any change to increase the accuracy of the estimate
was made after error data was available for the current proj ect. The er-
ror models were developed with the assumption that no new errors  are
added to a program during it’s debugging phase. In other words the curnu-

• lative error correction curve approaches a horizontal asymptote. This
however is contrary to practical experience.

Discussions with program managers have revealed that a certain
amount of bug generation is associated with eve ry debugging process.
Some of the ways in which error s may be generated are

1. The correct ion of a bug may work locally only (I. e., the
global aspects of the error  still remain).

2. A typographical error may arise Invalidating the result
of bug correction. 

5- _ __  _  _ _ _



• •— ~~~~~~~~~~~~~ - - .—-S- ..S~~~~~~~~
5-._ —— ~~~~~~ . - — S—~~- - -

5,’

3. The cor rection is based upon fa ul ty analysis , thus com-
plete bug removal is not accomplished.

4. The correction is accomplished, howeve r, it is accom-
panied by the creation of a new error.

5. Errors which are detected but not corrected, act in
many ways like gene rated errors.

During the development phase we are faced with two classes of changes
in a program. those due to changes in the specifications (design) and those
necessary to correct software errors. Although both classes of change s
are important we only discuss the change s needed for error correction. In
evaluating the constants of the models from data, it is important to keep
ca reful record s so one is able to diffe rentiate between these two effects.

The concept of bug ge nera t ion is analyzed in the following chapters.
In Chapter 5, a two-phase model for the error correction rate leads to
various possibilities fo r a hypothetical model. A n economic analysis of
debugging follow s in Chapter 6.

2

-- ,—  S - 5•--..~~• .•-•S.—.S . - — ---S•S -—.—S — .- - - ••5- -- -S—.- - •~~—— ~~~------- -~ _ _ _ _ _



r— 5-. - 

~~~~~~~~~~~~~~~~~~~~~ 

- . .• -~~~~~~~

CHAPTE R 2

SUMMARY OF EXISTING MODELS

2. 1 Introduction

Earlier error models developed in the literature assume that the total
number of errors in a program is fixed and tha t if we record the cumulative
number of errors corrected during debugging, then the difference between
the initial number and the number corrected represents the remaining er-
rors. The reliability models to be discussed in this chapte r relate the prob-
ability of encounte r ing a software bug to the number of re sidua l bugs, the
total number of instructions and the instruction processing rate.

2. 2 Error Decay Model

Assuming that a careful record of errors corrected is maintained, a
graph of error correction rate ver sus debugging time may be drawn. The
debugging process starts with the number of errors corrected being equal
to zero, and the time axis starts at the instant the debuggers begin work.
The debugg ing rate is def ined as

r~
(.r) = e r rors removed/debugging time r (2. 1)

Using Eq. (2.1) a cumulative error curve n~
(.r) , can be defined as

= /‘ r (x) dx (2. 2)

Solving Eq. (2. 2) for r
~

(.r), the slope of the
~~~~ 

curve , we obtain

dn (r )
r ( r ) =  (2 .3)

If we assume that the total numbe r of errors  in the program, ii re-
mains constant, then the curve nc (T ) approaches n~ asymptotically ~or
large 7 . Assuming that all detected errors  are correcte d we can write
fo r the remaining errors n( T)

n(T ) = - (2. 4)

If we furthe r assume that in any sizable program it is Impossible to remove
all errors , then

< ‘
~t 

(2. 5)
and

n( r ) . 0 (2. 6)

3

. 5 - S . . .—



.‘-•S - - - -- .  . ..— S •----S-—-.S---S--S--S . , •  .5—S ... .5 -5-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2. 3 Reliability Model

In order to formulate a reliability mode l , we assume tha t operational
software errors  occur due to the occasional traversing of a portion of the
program in which a hidden software bug is present. An expression for the
probability that a bug is enc ountered in the time interval At after t hours
of successful operation may be derived. This must be proportional to the
probability that any randomly chosen instruction contains a bug . If we fu r-
ther assume that all Instructions are equally likely, and that all bug s are
homogeneously and randomly distributed, then the probability that a ran-
domly chosen instruction contains a bug is given by the number of e r ro r s
normalized with respect to the total number of instructions e~ (r )  =

where total number of instructions.

From reliability and probability theory [ i ii  it is obvious that the pr ob-
ability of failure In the Interval t to t + ~ t, given that no failure s have oc-
curred till time t is proportional to the failure rate (hazard function) Z(t).
Mathematically we may write the above argument as

P[t < tf < (t + At)/t f > t]  = Z(t) z~t = k 1 er ( r )  r~ At (2. 7)

where

tf ope rating time to failure (occurrence of a software error)

k 1 = an a rbit rary constant

e (7) number of remaining errors  normalized with respect tor the number of instructions, i. e , ,  n(7 )/ IT
= the rate of instruction processing

In th~ past the re have been difficultie s in defining r , since for each
loop, the rate at which the instructions are processed v~ ries. Also if in-
terruptions or jumps or calls to subroutine s occur the processing rate
va r ies. To overcome thi s problem a simplified model is used,

z(t) At = k e r (T) A t (2. la)

where k an arbitrary constant which must be measured for the particular
program = k 1r~ .

From reliability theory [ i i ]  it can be shown tha t the probability of no
system failures in the inte rval (o, t) Is the reliability function which is re -
lated to the hazard function by

I t  •I
R(t) = exp - 

~
( z(x ) dx (2. 8)

[ o  J

______________________________



W5~
5
~-S~~~~~~~~~~~~~ ’ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ —--5- - - 

. . - ,  -. - .

I

Substituting for z(t) from Eq. (2. 7a) into Eq. (2. 8) and assuming k and
er (r )  are independent of operating time t we obtain

R(t) = exp{-k er (7)t} = exp(yt) (2. 9)

Eq uation (2. 9) states that the probability of successful operation without
bugs is an exponential function of operating time.

Using the reliability model the MTTF, mean time to (software) failure
can be easily computed [I]

M T T F =  f R(t)dt (2.10)

Explaining the above set of equations we find that to measure the parame-
ters in the model we have to work backwards. By operating the program
in a real or simulated manner MTTF (i i  can be observed. Substitution
from Eq. (2. 9) into Eq. (2. 10) yields

M T T F=  f exp(_yt) d t =  i/y (2. 11)

By substituting Eqs. (2. 2, 2. 4 and 2. 9) into Eq. (2. I i )  we obtain

1f l  . . r (x)dx1
MTTF = 1/kI-~ - - f c (2.12)

L T O

Assuming that careful error records are kept,

r~(x) dx

is known. The two remaining parameters to be determined , k and
are dete rmined by measuring the MTTF at two different value s of 1. If
we further assume that r

c
(7) is a constant equal to r , then Eq. (2. 12)

reduces to 0

MTTF = 1/k
(T
! 

~~~S!
2

T)

(2.13)

As we said earlier, if we work backwards with a record of MTTF and with
a knowledge of r& ‘~~ 1T and k,

~
can be computed using Eq. (2. 13).

I

_______ -- ~~~.1. ~~~~~~~__~~~~ ~~~

______________________ —-S --S.- 55

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . — — - . . •-
~1

2. 4 Summary

In the foregoing discussion it has been assumed that the total errors
which is a sum of those errors remaining in the program and those elimi-
nated remains constant during the debugging process. This assumption has
been made in order to predict a behavior with less mathematical complexity.
In reality there is a generation of errors associated with correction. As a
result of this the total number of errors inc reases with time. Such a beha-
vior of bugs will be investigated in the following chapters.

6

~~~~ ,~~~~~~~-- -S.-~~~~~~- _ _  _ _ _ _ _ _ _ _ _


CHAPTER 3

SURVEY OF DEBUGGING DATA

3. 1 Introduction

To derive accurate values for model parameters and to verif y the valid-
ity of the models a wide range of data is necessary. However, one can es-
tablish the model with limited data and refine the parameters (and perhaps
the form) of the model with data which will be available at a late r date. The
data discussed in this chapter can be used to determine the parameters of
the models in Chapter 2 as well as those in the following chapters.

3. 2 Large program data

Seven different programs were studied in the lite rature [1 J and the er-
ror content (number of errors removed) was recorded. These are shown in
Table 3. 1. FIgure s 3. 1 and 3. 2 show the normalized changes recorded
eve ry month. From those figures we observe a gene rally decreasing trend
in error rate versus debugging time. One possible explanation of this phe-
nomenon is , if debugging is efficient then the errors decrease with time. If
fewer errors are present then the number of er rors discovered and removed
are also few. This above argument is at present unsubstantiated and may
be thought of as a hypothesis.

3. 3 Errors removed proportional to errors remaining

One of the error models proposed by Shooman [ii is that the number of 5

errors removed Is proportional to the number of remaining errors. Mathe-
matically we may wr ite*

r (7) = k (n t - ~~ (3.1)

where

r (7) = error correction rate

= total errors, i. e. , sum of those removed and those remaining

= number of errors removed

k = a constant of proportionality

dn
since r (’r) = -~~~~~~~ (3. 2)

*The notation in this report differs slightly from that used in the literature.

7

_ _ _ _ _ _ _ _ ~~~~-~~~~~~~-S.-. rn—- ~~~~~~~ .-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

If we assume no new errors are generated and that all errors detected are
Immedia tely and perfe ctly corr ected, then

dn
.
~j
i = k~ (n~ - n~

) (3. 3)

or
dn
-

~~~~~~~~ + k~n~ = kcfl t (3. 4)

A solution of Eq. (3. 4) yield s

= nt + A exp (_k~ T) (3. 5)

Using the initial conditi on that n~
(1 O) = 0 at ~ = 0 we get A =

Thus the cumulative error  correction curve becomes the exponential
rise to the asymptote n~

n ( T ) = - exp(—k Tfl (3. 6)

Figures 3. 3 and 3. 4 are plots of cumulative er rors  corrected from the data
in Table 3. 1. These curve s have a profile similar to an exponential only
during the late r part of debug ging. The refore, Eq. (3. 6) cannot entirely
describe these curve s. To unders tand the dynamics of er ror  behavior , the
data from Figs. 3. 1 and 3. 2 is redrawn as continuous curve s in Figs.
3. 5(a-f). The scale s are suitably normalized. Let us postulate a model in
which error  correction rate per man-month decays exponentially ( Fig. 3. 6a)
during the course of debugging. If we furthe r assume a triangular distribu-
tion of manpower as illustrated in Fig. 3. 6b, the n a produc t of the ordinates
of the curve s In Figs. 3. 6(a and b) give s rise to the number of errors  cor-
rec ted per month. The re sulting curve Fig. 3. 6c rate appears to be some-
what similar to those in Figs. 3. 5(a-f), and an integral of this curve (Fig.
3. 6d) over the debugging period give s the cumulative errors  corrected. We
are, howe ve r, unable to compare quantitatively the hypothetical curve with
those obta ined using the data, beca use a comparison depend s upon the scale s
used and the scale for the hypothetical curve is not based on data. In con-
clusion we may say that the error model as shown in Fig. 3. 6 resemble s
the profile of some of the experimental curves shown in Fig. 3. 5.

3. 4 Debugging effor t

Before we can postulate an error  model it is advisable to refe r to other
developments tha t have taken place in this field. An experiment on debug-
ging of a 4000 machine language program was conducted at Bell Laborator-
ies [6~. In conducting this experime nt programmers were asked to fill a cer-
tain Trouble Report/Correction Report (TR/ CR) form andanother supplemen-
tary form in orde r to derive relevant information regarding the nature of bugs.
Sixty-three such forms were completed. Out of the 63 TRs generated, 11
contained no errors and 7 contained minor annoyances which would in all

8

- —-5.-—

~

5— .5- ..- -.5-5-— S 5 - 5 -~~~~~~~. 5 - . -  .- ,.. —S-—- ---S5--.— -5-S--



- -S~~~~~~ 
5- 55555- - -. 55-55 555 5 . . - . : 5 5  . 55-55~~5

55555 55S55~~~~ 5-5-~5-S - -

probability not be defined as a bug. Thus there were 45 real errors. This
works out to be approximately 1% of the total lines of code which the pro-
grammers declared to be in agreement with previous data. One of the out-
comes of this experiment is a record of the time taken to remove each er ror .
Figure 3. 7 shows the working time and computer time expended in the de-
bugging process. A careful examination of this figure reveals that except
for a few spikes , the time expended while working on most of the errors is
approximately the same. This leads us to conclude that the rate of error
correction is a constant. We will use this assumption in Chapte r 4 and prove
that it leads to anomalous results.

F. Akiyama I 8j reports another study on software debugging. At Fujitsu
Limited in Tokyo a system cafled SAMPLE (running unde r the Monitor V of
FACOM 230-60 the Fujitsu large-scale compute r)was . developed. The
SAMPLE consists of seven modules and was programmed in FASP, the
assembler language for FACOM 2 30-60. The program sizes and the organi-
zation of SAMPLE are shown in Table 3. 2. Table 3. 3 shows the relation-
ship between the nature of the program and the occurrence of bugs for each
module, while Fig. 3. 8 portrays the cumulative number of bugs as a function
of the development time. A careful examination of Fig. 3. 5 shows that the
error correction rate was not a constant all through the process of debugg-
ing. It decreased toward the later part of debugging. All these curves have
a horizontal asymptote which shows that the number of errors corrected
reaches a saturation level. Calculation of the cumulative error curves from
the data in Ref. [ i ]  displays a similar behavior. (Also illustrated in Fig.3.4)
We will concentrate on this idea and use it in the following chapters.

Havin g reviewed some of the available literature in this area , we should
now be able to proceed further with our error  model.

9

_ _ _ _ _  ________



fl55---5- .5--- -55-- ~~555~~s 5 5 5 5~~~~~

41

~e2 ~~~~~~~~~~

~
.~. o’..o a’ ~~los  ,t~ .o .‘~ 1’~o 0

8 h~
~ sn~~~~o -q’ sn e ~1~~ t - ,-eo o
~ IN ~~ N U~ ~~. .

~~ N N 1 1—

4:

‘C w O ,~~5 
~~~~~~~~~~~ O s ~~I~~~~~~~Osn .~~osn p.

14 U~ ~~~~
IO %O~~~ N ‘e.~

0~.~~~~NNII~ N q..

~ ~~~ Q ~~~o’o’do

~~
‘ .

~ ee e eo o o o
‘C 0r-~oc ’ r-

0’ m N It) ~~ ~~
III 4

U pp’
_
~~

_

~~~ ~

— I— N ~ It) —. ~~ 0 it) — 0

~) O’ N...dd

10~~11111.1

V
~ .- Nit) . .eOO ... eII O O N N~~~

.. N tVI~~ ’ S ft,Ø p. CO

_________________



TABLE 3.2

SAMPLE’s structure and scale of each module

Module Program steps
name (Kilo step) Note

MA 4.03 experimental
module

MB 1.32

MC 5.45

MD 1. 67

ME 2. 05

MF 2. 51

MT 2. 10 Common program
table and message
string

Total 19.13

(see Refe rence 8)

11

5- .-~~~ -— 555 —_ _  



_ _ _ _  
_ -.

2 N ~~~‘ p- ~~ q’ 0
.0 Q’ ‘C ~~ ~~ ‘C s ~..M . . . . , . s 0— — ~~ — I

a)
0 .0 ~~

i... .2 ‘ N 10 0 tO .~~ p. ~~~‘ ~~

0 en p. in ~~~‘ ~~~‘ .2
a, — • S S

N ..  en — N ~

— _ _ _  

a, ‘I

~~~~~~ a,
.0 s -..en ~~~~_I ~~~~~~NI 0
~ 0 ~ N 00 ~~ .0 1 N N ‘~~~

~~ 0 ..- a’ N N en a-. en

—

— _ _

.0 a,
0+ 10 0’. 1’ ~~

i N en ~~.a, . ~~
_

in —.0 N 0’. N it) ‘0’ ~ ..
‘
~~

.
~~ ~~~

N E .0 g
a, 0 .

~~ E
a, k

~~~
.— en ‘0’ N 0 p. ‘.0 N 0 ~~~p4 t 00 ‘0’ ‘.0 en 0’. 00 0 ~

‘.1 N en — ,-. ~ -. N •i3 ~ 4.1
0 — tO 0 5

-4

~~ 
a, ao 

~~ 

a .,4 1
94 0 a)

...4 ~~~
t~ a N in N — tO N N ~ .~~ a

a, Z “ N — in — .i — 00 —
a, en N in en ~~ N ~~~ 

‘
~~~ 

‘
~~~

— — — — — — a, ..-.. a, a,

40~~~ ~~~~~~~~~4J ~~~~~
N 0’ en ‘0’ - en N a 

p4
0 .t~ EQ.. en N it) N in — in ...~~ Cl) 0 en ‘0’ .0 0 in 0 ,~~ ~~~ .. ..p4 ‘0’ — in N N p.

_ _  _  I

_ _ _ _ _ _ _ _ _  _ _ _ _ _  -



-
~ 

— 
-55— .5 -..- -S - 5 - -  ~5 5 ~~555 5 555 • 

SS 5555-55 5~5-~~5-55-. - 
_~~~~~~~~~~~~ ‘~~~~ 5- _~~~~ 555~_~~55S5_~~SS_~~~ ~~~~~~~~~~~~~ -,

I
,~~0 0

I
L a,

I
C1)

— t i ._ti ‘I

0 0~~~0~~~001 —

a,

4)

rI t’-~~ a,
I 

~~
. .u a, S

i a
‘I

I
I 

—

I I .

Q O Q O
~~~~ 

—

$4 0
$4 14

a, ”N o

~~~ ~~

I

~~
I

FJ!

£01 X u0!4~nJ4$U!/ S;5UDq3 (i.)d

13

L.. b~~~~~~~~~~ 55S5~~~~~ SS~~~~ — 5- - ~~~~~~~~~~~~ ,—— ~~~~5 55 --—-- -~~~~ ... 55 5.— . — S 5- s~ - 5~~ . -.



_____________________________________________________ -~~~~~~~~~~~~ ___5
~
_
~~

_ 555 5555-_~~~~~~~ 5~5S5 — 5.55.5555~5:SS _S.__.S5-SSS

~

S.___
•~~~~~~

5555_ — 555 . 5~ — ~~~~~~~~~~~~~~~~~~~~ .S_ fl._.__ .__ S S5~5

--- - - -

14.C — 4.C - 4.C

3.C 
- 

30 3.0

~~1

,
~~ O I ~~~3 4 5 6  0 1 2 3 4 5  0 1 2 3 4 5 6 7

~-monthi
Appi. A Appi. B AppI. C

0 2  q 6 8 1 0 12

AppL D

Fig. 3. 2 NormalIzed error rate versus debugging time for fou r
applications programs. (See Reference 1)

.1 

14 j

-5- —55-~~~~~~ —-~~ - .- ~~~~~~~~~~~~ —~~~~~~~~ —— .- -~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
55 —55-—



555 S~~~~~~55~~~~~~ _ . ~~~~~~~~~~~~~~~~~~~~~~~ 55 5555

.-~~~~~~~~~~~~~~~ .-~~~---- ,-.

I
I
I I
I

II - I D

I i U)
£I —

C a,
- 1 1 ) 0

• i a
I
L.a 0I U I

-
~~~~~~~~~ 

.

~~5%• S 14

p

I ‘I. I ’~~
_ _ _

p ..\.. .,,.. -_-_.-
~~~~~~~ $4

_

s.. - Ii) CI
$ 4 1 4I 5% .

~~U U ” .4
a,

I \ - c s J
U V ‘ 4 4 )

$4 4,VI

I I I I _ I
11) ~ I”) C’J

-m— (.1)?

201X UO9~flJ ISUI/ SJOJJ 3 aA $OIflWfl 3 5 .



-—- 5 . ~~~~~~~~~~~ 
~~~. .~~~~~~~~~ .

14

~ 12
8

$
~0

8 _ _ _ SupeV~~0rY_ B
~~~

•

U,

Lii

.~~~44—
0

E
0 2 SupervIsory C

0 I 2 3 4 5 6 7 8
Number of monff’is of Debugging

Fig. 3. 4 Cumulative er ror  curves for some of the systems in
Figures 3. 1 and 3.2  (See Reference 1)

16

555



.
~~~

‘55
_

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ . __ ~---55,, . ______

—

25-

~~~~~~~~~~~~~~

0 2 4 6 8 10 12 (4

~~
70-

a, LIII _ _ _

~ 60-

~~~50-
240 -

~~~30-

~~~20-
2

E

~ Q I I I I I I I I I I I I I
-
~~~ 0 2 4 6 8 10 12 14

Number of Months of Debugging
Fig. 3. 5a Error rate curve and cumulati ve error curve for

supervisory A of Fig. 3. 1 (Suita bl y normalized)
5

Ci) Envelope of the e r ro r rate curve for Supervisory A
(ii) Cumulative error curve for Supervisory A (see

Pefe r.~nce t)

17

___-

— -~~~~5- - --~~~~~~ —

.. ~ S-- -,-,- - — - .555- .- - - -

0
E

(i)
t25 -

ZO O ______________

~~~80-

o .1 I I I I I I I I I I I I I

0 2 4 6 8 10 12 14
Number of Months of Debugging

Fig. 3. 5b Er ro r  rate curve and cumulative error  curve for
supervisory B of Fig. 3. 1 (suitabl y normali zed )

(I) Enve lope of the e r r o r rate curve for Supervisory B
(ii)  Cumulative e r r o r  curve for Supervisory B (see

R efe rence 1 )

18

- ,  -~~~~5-5~~~~~~~~~~~ -- -- - - 5 ~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ -S.-5- - ..,



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ‘ S5~5..._5555-S.S5_5__5S~’ — —~~~~

.~~.~~~ _~S.S.5S.,,,_______. .________ ~ -

I

g 70-
(
~~

° 60
U)

—
W 4Q

.

1 -

~ 20-
0

0 I I I I I I I I I I I I I I

0 2 4 6 8 10 12 14
Number of Months of Debugging

Fig. 3. 5c Error rate curve and cumulative error curve for
S

Supervisory C of Fig. 3. 1 (suitabl y normalized)

(i) Envelope of the e r ro r rate curve for Supervisory C
(ii) Cumulative error curve for Supervisory C (see

Refe rence 1)

19

______________________________ — ‘-‘ . 5 -— —.


~~~~5 - 5~~555555 _. ‘ ~5 - 5 5 ’ ~~~f l’5-S ~~~~~~~~55 .S _  5-
~ 7~~~

5555-
~~~~~~~~~ 

— ‘

~
-1- 5 - -

~~~30-

o 2 0 -

‘S

10-
0 5

I I I I I I I I I I I I I I

2 4 6 8 10 12 4

0 140 -a)
120 -

~° 100 -
‘- 80-Ui

~ 60-  .

~~~4 0 -

0
00 2 4 6 8 10 12 14

Number of Months of Debugging
Fig. 3. 5d Error rate curve and cumulative error curve for

A pplication A of Fig. 3. 2 (suitabl y normalized)

(I) Envelope of the er ror rate curve for Application A
(ii) Cumulative error curve for Application A (see

Reference 1)

20

_ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _

_ _ _ _ - - ~~~55 ~ 5555-_~~~~~ - - - 5 . --- - .- - - -.~~-.~~~5--5’---. -

£ 4 0
35. (i)

0
4)

~~~~~~~~~~~~~~ .

‘S

20 -
U)

~ 15-
Lii 10 -

5-
0
Z 0 I I I I I I I I I I I I

2 4 6 8 10 12 14

V 80- ~~~~~~~~~~ (ii )

~~~70-
‘S0
0
U) 5 0

~~~4 O -

~~~30 -

~~~20 -
E 

~~~~~~~~~~~

0 I I I I I I I I I I I I

0 2 4 6 8 10 12 14
Number of Months of Debugg ing

Fig. 3. 5e Error rate curve and cumulative error curve for
Application B of Fig. 3. 2 (suitably normalized)

(i) Envelope of error rate curve for Application B
(ii) Cumulative error curve for Application B (see

Reference 1)

21

________ -~~~~~~ 55~~~~~~~~~~~~~~~~~~~~~~~~~ s~~~~~~~~~ - 5 . --

... ,.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0 35~
30- ( I )

~~~25-

O I I I I L I I I I I I I I I
Z 2 4 6 8 JO 12 (4

V
.2? 80- (i i)0

~~~70-
00 60
U)

~ 50-
L1J 40 

.

.

~? 3Q .

E 20
o

0 I I I I I I I I I I I I I .1

0 2 4 6 8 KJ 12 (4

Numbe r of Months of Debugging
Fig. 3. 5f Error  rate curve and cumulative error  curve for

Application C of Fig. 3. 2 (suitabl y normalized)

(i) Envelope of the error  rate curve for Application C
(ii) Cumulative error  curve for Application C (see

R efe rence I )

22

- -5--- . . 
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1_ - ..S_5.s&. LS 55 5~~ .S55..._ .~A..&s5.. & - .._...:._.. _. .s ..s .S...S5_.S .. - , ~.._._ A.a... ~S S_ ~~

‘ “

.
55 .‘ ~ ‘-

~~~~~~~~~
-

~~~~
‘
~~~~~~~~~

‘ :~~~~~~ - - T ~
- T ’ - ~

-—-

C; 2 O

>,
,p

/ ~~s~~~~~~~~~~~~~~~~~~~~~~~~ ( C ) ~~C)  I

Number of Months of Debugging
Fig. 3.. Hypothetical error  model based on the p r5 f i l e  of curve s in -

Figs. 3. 3 and 3. 5
(a) Variation of e r ror  removal per man -month ove r the

debugging time
(b) Variation of manpower over the debugg ing time
(c) Varia tion of e r ro r  remova l per month ove r the

debugg ing time 
S

(d) Cumulative error removal

_ _ _  _  _ _ _ _



~~55~~~~~~’555~~~~ ---- 5 -,

Working lime - to, Diagnose
and Correct, Compared..,..

14

Working Time To
Diagnose (Hours) 

~
TR/CR Number 0 .i.ft i, 1 1 I I’L.., ~~~~~ 

Iii i~~ k~”~
1 
~

.
5 Working Time To7 ’  

No E ‘-19,24,26,33Correct (Hours) 42,47,50,
28~ 55,58,60,63
35

Fig. 3. 7a Working Time expended in Debugging as obse rved at Bell
Labs. (See Reference 6)

24

55 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 
— — -  - 55 —~~~~

- ,. —— ~~~~~~- S ~~~~~~~ —~~~~~~~ 5-.—- . 5  ~~~~~~.-



~~~~~~~~~~~~~~~~~~~~~~~~ S__S 5~ 55 S 5 S _ 5 5 5 555 5~~~5 5555 5 ,5 •~~~ 555 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Computer Time to Diagnose
and Correct, Ccmpared.......

Computer Time to
Diognose(Mlnutes) 30

TR/CR Number ~ ~~ Iljjj i[j,ijJ,L,.iiiLIL...~.iiiir.i1
Computer Tm~e to 20 No Error - 19,24,26 33,42,47,50,56,
Correct Minutes 30 58,60,63.

S Nate:— See Note for Figure 6
2 hours l

S Fig. 3. 7b Compute r Time expended in Debugging as observed at
Bell Labs . (See Reference 6)

L~~~~~ 

25 

-_
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

~~~~~— - _ _ _- — -55---



~~~~- . . S 55 - -5 - 
-I’

• 4-

~: 
\ ~~~~~ 

Eli i i
1

— S

‘S

I

‘N.j \ ‘I  1
c%J

—

• S S

—4C. 
~\ -

— t I I_ _j___
~_ 0g g 2

sbnq 10 ~Gqwnu

26

S - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SS~~~~~ . 5~~55 ~~ 5 5  -- - -—--5 --—— -- —- , S,-



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - . 5 - . ,  -~~~-~~~~r - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 55 S ’ ’~~~~~~ ’

CHAPTER 4

ERR OR GENERATION MODEL

4. 1 Introduction

In Chapte r 2 we discussed an error model in which the total number of
program errors remained cons tant. At this point we examine the as Bump-
tion that it is feasible to debug without gene rating an error. Most software
personnel agree that there is a certain generation of errors associated with
correction. The ways in which errors  are generated was discussed in Chap-
ter 1.

Depending upon the efficiency of debugg ing, the error  gene ration ra te
could be greater tha n, equal to or less than the error correction rate. The
resulting error behavior in the three cases is shown qualitatively In Fig.
4. 1. (Figure 4. Ia is a particular case whe re there is no generation of er-
rors) (3]. The time is when debugging stops. Note that the number of
errors remaining ~ 0, in each case.

4. 2 Model for Gene rated Errors

We wish to develop a set of equations ‘~th ich will describe the above
cases. We begin by writing a difference equation for the number of errors
in the program.

Errors present at time = [Errors present at time

+ (Errors generated in the interval (7
1
-T1_ 1 )]

- [Errors removed in the interval (Ti _ T
i i~1.

If we let

ng (Tj . 
~~~ 

number of errors generated in the interval (TI
_T

i_i)

number of errors detected in the inte rval

n~ (ri, r1 j)= number of errors corrected in the interva l (T
i

_ ru)

then the number of errors remaining in the program at time r1, n(71), is
given by the following difference equation

= 1
~~~

ni_O + ~
1g (Ti1 T1_ 1 ) - n1

~~
(TI .  r1_ 1 ) (4. 1)

Conversion of the above difference equation to a diffe rential equation is per-
formed by grouping terms, dividing both side s by (r1-.i~ ~ 

M- and taking
limits

27

1.5. - - -.- ---S---5-~~~~ ---- -55—-—5— - -_____________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _  -.5 -5-5 - - --5-5-5- 5-5-5

~ ~f 
n(TI n(Tt l )  

} 
= 

f 

fl g (T~~~~~ j
)} 

~~~~~ ~~~ 

nc~~i’~~i~ O}

The left-hand side of Eq. (4. 2) ls recognized as the rate of change of er-
rors remaining, i. e., the de rivative of n with respect to r • The right-
hand side is composed of two te rms, which as the limit is approached
become the rates of error gene ration and correction respe ctive ly. The no-
ta tion for error rates is given below

r
g (r j) Gene ration rate of new errors at time

Correc tion rate of errors at time

rd (T i
) Detection rate of errors at time

Using the above definitions , Eq. (4. 2) become s

c1~.
,
(r) = r g (7) - r~ (7) (4 .3)

In Eq. (4. 3) the term accounting for er ror generation include s all the five
cases discussed in Chapter 1 which are create d by debugging changes. In
a process whe re debugg in g is efficient, the generation rate is smaller than
the correction rate and the number of bugs in the system decreases. A
steady state is reached when correction decreases so that dn(7)/dr = 0.
(See Fig. 4~ Ia and b) Let us hypothetically say that the correction rate is
proportional to the detection rate.

r (T) = ~ rd (T) (4. 4)

In the ideal case, all detected errors are immediately corrected and
= I. However , in practice 0 < ~ < I because some detected errors may

be incorrectly fixed. The latte r effect adds to the gene ration as previously
discussed.

The generation effect is more complicated to model. If we assume tha
the gene ration rate is proportional to correction rate, then

r g(T) = a r (r) (4. 5)

Combining Eqs. (4. 3), (4. 4) and. (4. 5) yield s

dn(’r)
= a r (7) - ~~r (T) ~~(a.t) r (T) (4. 6)

Inspection of Eq. (4. 6) show s that the effect under these assumptions
for the normal case where a < I is tha t the number of e r rors decreases.

28

5 . - - - -- ‘ 5 - , . - ~~~~~~~~~~~~~ - . - - — --5- .55— 5—- S ‘ - ., 5__ ., 5— .— S

However, if a> I , generation exceeds correction and the result illustrated
in Fig. 4. Ic is obtained. If a = 0, there is no generation, but in general
0 < a < i and the effect of error gene ration is to reduce the effective cor-
rection rate (see case I , Appendix I) . From the solution we can see that
for large 7 , n(T) become s negative which lead s to a physical contradiction.

We may explore a different model by assuming the detection rate is in
turn proportional to the number of rema ining errors. This leads to Case 3
of Appendix I, and n(r) is a decreasing exponential. This result agrees
with only a part of the expe rimental data reported In the literature (1 8],
since shape s othe r than decreasing exponentials have also been observed
for n(r).

A diffe rent hypothesis is to assume that gene ra tion of new errors is a
function of not only the detection rate, but also the numbe r of remaining er-
rors. Clearly, the large r the number of detected errors , the more are the
changes required and the probability of creating an error increases. Also
each time we make a change there is a chance that this will interact with
existing errors and create new errors via the interaction. Assuming gene -
ration is a simple product of the se two f unctions and correction is as given
in Eq. (4. 4) (with f i replaced by b) we obtain

rg(T) = a n(’r) rd (T) (4. 7)

r
~

(T) = b rd (T) (4. 8)

where a and b are proportionality constants. Substituting Eqs. (4. 7) and
(4. 8) into Eq. (4. 3) we obtain

dn(r)
= a n(r) rd(r) - b rd (r) (4. 9)

If we make the further assumption that the detection rate is a constant , r ,
Eq. (4. 9) becomes

dn(T)
= a r n(T) - b r (4. 10)

The above differential equation can be readily solved by taking Laplace
transforms or by classical differential equation theory yielding

n(r) = (n0 - b/a) exp(a r0 r) + b/a (4. I I)

where nft = 0) n0.

The behavior of Eq. (4. I I) depends upon the relative value s of n and
b/a. Since the probability of n0 being exactly equal to b/a Is very l8w,
we are left essentially with two possibilitie s. If ne, > b/a, then n(T) builds

___________________ 5-

-5 — —---~~~~~~~ - . -,

up exponent iall y. If no < b/a, the number of errors decreases and becomes
negative for large z The two cases are il lustrated in Fig. 4. 2 , and Case
4, Appe ndix I,

4. 3 Contradictions and Basis for a Reformulated Model

A negative number of errors has no physical meaning, thus some cases
of the models g iven in Table A-I lead to a contradiction. Either the initial
assumption and the model are only valid for a short time period or our ini-
tial assumptions were wrong. In fact we have assumed seve ral models for
e r ror generation and have rejected the results (Eqs. 4 . 6 and 4 .11) because
the remaining er rors went negative or the cumulative error correction
curve did not resemble those observed experimentally. We now turn to-
wa rd models for the er ror correction rate which may be more realistic,
so as to obtain an expression for n(T) which does not violate physical rea-
soning and fits the expe rimental data.

Programmers have reported that initially the bugs are easily removed.
Only in the advanced stage of debugging, doe s the error removal become
intricate. Although Shooman and Boisky [61 present evidence that the effort
to fix a bug is the same for early and late r bugs, they did not feel the re-
sult was in itself conclusive enough to ove rturn the intuitive hypothesis that
the late r bugs are the hard one s to fix . In Table 3. 1 and Fig s. 3. 1 and 3. 2
we observe a decreasing trend in the correction rate with debugging time.
Based on this fact if we assume that correction rate is proportional to the
numbe r of remaining e r ro r s, then this leads to a cumulative correction
curve which doe s not conform to expe rimental re s ults. A more complex
model with features from both of the two extreme possibilities is developed
in the next chapter.

30

5 -

NORMALIZED
CUMULATIVE ERRORS DEBUGGED

dr) ____________________

— — — — — ERRORS REMAINING

S ERRORS CORRECTED

T— MONThS OF DEBUGGING
(U) APPROACHING £QUIUBRIUM.HOAIZONTAL ASYMPTOTE, NO GENERATION OF NEW ERRORS.

((7~) ~~, ERRORS *00(0
ERRORS REMAI!eING

ERRORS CORRECTED

T Tp
(b) APPRO&CNING EQUIUBRIUM, GENERATION RATE OF NEW ERRORS EQUALS ERROR

REMOVAL RATE.

ERRORS AODED

~~ ERRORS REMAINING

—
—

— —
—

ERRORS CORRECTED

Is) DIVERGING PROCESS, GENERATION RATE OF NEW ERRORS EXCEEDS ERROR
REMOVAL RATE.

Fig. 4. 1 Cumulative errors debugged versus months of debugging.
(See Refe rence 3)

31

- . . 5 . . .- .5 - S

-- 5— ———- .-~—. — ~~ ~~~~~~~ — .__s 55_-5__555~ •~~5

Total errors

~~~ rema~ ng

____

~

Errors removed

(a) The case where no> b/a

Totol errors . 
-:

Errors remaining

iI~~~~~~~~K

Errors removed

(b) The case where rio < b/a

Fig. 4. Z The model developed under the assumptions of Case 4
Table A - I .  (See Refe rence 4)

32

II~~. . . - ~~~ 5- —
.

—~~~~~~~~~ — -5-- — .~~ . . .  ~~~~~~~~~ . 5-.. . .  _.55555S__ ___ S_ 5- ’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
S _ _ S



___ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

CHAPTER 5

ERROR CORRECTION MODEL

5. 1 Int r oduction

In Chapte r 4 we found that our assumption of constant error correction
rate resulted in the number of remaining er rors  eventually going negative.
This leave s us with several alternatives.

1. We can discount the results of the expe r iment conducted
at Bell Labs [6]

2. We can accept the earlier hypothesis that the correction
rate is proportiona l to the number of remaining errors

3. We could formulate othe r hypotheses.

There is no definitive answer to these questions. We could ar gue
against the expe riment conducted at Bell Labs f 6] in two ways. On the one
hand this conclusion was based on the results of just one expe riment con-
ducted on a program which can be conside red as between a small and me-
dium sized program. Secondly, the re ference did not discuss gene ration
rate of e r rors. In Chapte r 4 we attempted a few models for e r ror  2enera-
tion , Eqs. (4.6) and (4.11) , and found the results unsatisfactory. We
now turn our attention toward other models for error correction.

5. 2 A Two-Phase Model

In earlie r work [1, 8], a decreasing trend in error  correction rate has
been observed towards the later part of debugging. Figure s 3. 3, 3. 4 and
3. 8 illustrate this fact. On the othe r hand, Shooman and Boisky [6] ob-
served a constant correction rate. Also, discussions with program mana-
gers have led to the conclusion that correction rate is sometimes manpower
limited. Thus, we postulate a new model where the correction rate remains
constant during the early stage of debug ging (manpower limited). We as-
surne that later in the program another stage is reached whe re the correc-
tion rate is proporti onal to the number of remaining errors. During both
these correction stages we assume the error gene ration rate is proportion-
al to the product of the number of remaining errors  and the numbe r of de-
tected errors as in Eq. (4. 7). The transition from the early stage model
of error correction to the later stage model may be conside red to occur at
a critical value of the remaining number of bugs which we call n1. These
assumptions lead to

rg 
= Pt n(T) rd (7) for all n(T) (5.1)

r~ 
= p2 rd(r )  for all n(’r ) > n1 ( Region ‘1 (5. 2a)

= p3 n(’r ) rd (T) for n ( r )  < n1 
rRegion 2] (5. 2b)

where p1, p2, p3 are constants of proportionality. 
S

33

5- - -~~~~~~~~ ~~~~
- 5 -

~~~~~~ _ _ _ _ _  ~~~~~~~5 - - -- —  - - 5 -— 5-


55 - . 55- -

~~~~~

If we make the furthe r assumption that rd (T) is a constant we obtain

rg = a1 n( i- ) (5.3)

rc = k1 for n(r ) > n1 (5. 4a)

= k2 ñ(T ) for n(T) < n 1 (5, 4b)

where

a1 = p1 rd (’r )

k1 = p2 rd(7)

k2 = p3 rd (T)

5. 3 A Manpower Limited Mode l

The model which was developed in the previous section retains the as-
sumption made in Chapte r 4 that the error generation rate is proportional
to the number of errors remaining [c. f., Eq. (5. 3)]. Howeve r , the correc-
tion rate is gove rned by Eqs. (5. 4a and b). Rewriting Eq. (4.3) for con-
venience we have

____ - r (T) (5. 5)

Substituting Eqs. (5. 3) and (5. 4a) into Eq. (5. 5) we get for the early
phase where n(T) ‘ n1 (called Region 1)

dn(r )  a 1 nfr) - k1 (5.6)

The solution of Eq. (5. &) is accomplished in a manne r similar to Eq.
(4. 11) yielding

n(T) ( n - k 1/a1) e t + k1/a1 (5.7)

where

n(7 = 0 )=  ~~

If n > k /a1 the debugging is out of control and Eq. (5. 7) indicate s that
the erro~ s bu~ld UP exponentially with time. * On the othe r hand if n0 < k1/aj ,

*Discusslon with exper tenceTsoftware managers hav~~ve rifled that on rare
occasions debugging does go out of control and either the program is
scrapped and rewritten or a new team of ‘Supe r Debuggers ’ is brought in.

555— . , 
~~~ a_~~~ —S-s. ~~~~~~~~~~~~ ~~~S _~ 5555*~&S~~i — _~S~~~~~~~~ 55 

_jS~~~~~~•~~ ~~~~~~~~~~~~~~~

r ~~~~~~~~~~~~~~~~~~~~~~ 5-S5S~~ S S 5 -

4

the correction process is efficient and the errors reduce with time. Once
the errors fall to the critical value -n 1., a transition takes place in the er ror

correc tion rate ~ind substitution of Eqs. (5. 3) and (5. 4b) into Eq. (5. 5)
yields

_ _ _ _ = a1 n (r j - k 2 n(T) (5.8)

Letting the time elapsed in reducing the number of errors to n1 be T1, a

solution of Eq. (5.8) yields

n(T) = n1 exp[(a1 - k2) (T T
1)] (5.9)

The conditions under whichthe transition occurred are explained as follows:
As the errors decrease the number of men employed is also reduced 19].
Since we intuitively fee l that the late r bugs are harder to fix, even if we
maintain the ratio of the number of errors to number of men constant we
will observe a dec reasing correction rate. (Note, this contradicts some of
the results of Ref. 6.) We have assumed an abrupt change in the number of
men ~.xnployed to reduce mathematic al complexity. In pr ctice the change
is gradual.

Eq. (5. 9) in itself gives rise to two cases depending upon whether

1 >k 2 1a1 or 1< k2 /a1. If I < k 2 /a1, then n(T) decays exponentially to zero

as 7 goes to infinity. On the other hand, if 1 >k 2 /a1 then n(~
) increases

exponentially, thereby re-entering Region 1. A physical explanation for
why the switch in regions may occur is that the quantity k~, is associated
with the reduction in manpower. As testers are removed’!rom the project ,
k decreases. If these testers are removed prematurely, k may decrease
Jthe extent that I > k,/a 1 thereby causing

a re-entry into I~egion 1.
With increasing errord’ some personnel are brought back and a transition
to Region 2 will soon occur. We thus can have an oscillating model. It is
convenient to categorize the model as

Case 1 The Unstable Model

Case 2 The Controlle d Model

Case 3 The Oscillatory Model

The three cases are illustrated qualitatively in Fig. 5. 1 and summarized in
Case 5, Appendix I. We will analyze each case separately.

Case 1

In FIg. 5. la the errors are seen to diverge exponentially. If the software
personnel are not sufficiently experienced , a more expe r ienced team could
be brought in to replace the current oae . At this point let us say, the
errors have built up to n ’ at time ‘‘. The new team establishes different values
for k1 and a 1 (viz. k~ and a1

1 I such that n ’ < k’1 la ’1
35

S

S5--5S _S,S~~~~~~~~~~~ . , ~~~~~~~ , S . S 5. S -55

The equation describing error correction is

~~~~~~~~~~~~ k1 r for ~~< 7’ (5. 10)

while n(1- ) is described by Eq. (5. 7). The total number of errors  at any
time is the sum of those remaining and those corrected, resulting in

= n(T) + n (T ) (5. 11)

For ~r > 7’ the error  equa tion can be written using Eq. (5. 7) resulting in

n(7 ) = (n’ - k’
1/a 1) exp[a 1(T -  7’) ]  + k’

1/a ’
1 (5. 12)

The error correction is given by

~~~~~~~ k~ r + k ’
1
(T-r’) (5.13)

Equations (5. 12) and (5. 13) are applicable between 7’ and r 4, where is
the instant of time at which the errors fall to the critical value n1. Beyond
74 the error equa tion is defined by Eq. (5. 9). To compute the numbe r of
efrors corrected we can rewrite Eq. (5. 4b) as

dn (7)

dT = .k2 n(T) which re sults in

= f i .~2 n(7) d7

or

= k2n1 r exp[(a ’
1 -k2)(T- ’r 1)J dr

or

k n
= ,2 1 exp((a 1— k 2)(’r- r 1)] + C (5. 14)

& 1
..k2

Using the boundary condition that n
~~

(r j) = k r ’ + k
~~~~~~~~~~~~~ 

which is true
from Eq. (5. 13) the number of corrected e r tors  in !Eq. (5.14) may be
written down as

k n
= k1 r ’ + k 1(7 1-T’ ) + 2 1 {exp((a 1-k 2)(r-71)] -1) (5. 15)

a 1- 2

36



.5

Case 2

The initial stage here is described by Eq. (5. 7) with n < k1/a 4 .  The
correction is gove rned by Eq. (5. 1 0) except for the fact that the eqdation
holds till time ~ • The errors fall exponentially and a transition occurs
at r 4 beyond which the error  model is described by Eq. (5. 9), with
1 < 1 t2/a1. The correction curve beyond r1 is described by Eq. (5. 14)

with only a difterence of a1 replacing aj and the boundary conditionbeing

~~~~~~ k171

The correction curve is therefore described by

~~~~~~ 
k171 + a~~-k2 

{exp[(a 1-k2 )(T- 71)] -1) f o r T >  (5. 16)

Case 3

T~~ the case of the oscillatory model a substantial number of errors have
been removed and if the oscillations can be broken the system debugging can
be promptly completed. As explaine d earlier one of the reasons for k2 be-
ing less than a1 is tha t the reassignment of some of the debuggers was done
prema turely. If the transition had occurred at a lower value of ii, the pat-
tern might have been the same as in Case 2. Therefore, once the process
goe s back to Region 1, the software manager may increase the debugging
personnel. If this is effective we may stay in Region 2 till completion of
debugg ing; however, if personnel are removed again we may restart the
oscillatory behavior.

He re the initial behavior of errors is given by Eq. (5. 7) with n
while the correction is described by Eq. (5. 10). Upon a transition %t n =
the model obeys Eq. (5. 9) with I > k2/a1. Afte r transition the correction
is described by Eq. (5. 16). n (T) now increases to n2 at time at which
point another transition (this happens due to personnel being brought back)
occurs bending the error curve downward. Under these conditions the mo-
del is described by an equation similar to Eq. (5. 7). The equation is

n(’r) = (n2 - k1/a1 ) exp(a 1(T- 
~~~~ 

+ k1/a1 (5. 17)

Using Eq. (5. 16) the correction curve can now be written as

n~
(T) k171 +

~~~~~~~ 

{exp((a 1-k 2 )(7 2 -71)] - 1) + k1Pr-l~2 ) (5.18)

for ~~~
‘>

The errors  now fall until a critical point definedby n= n3*at 7
3 
when another

*n is set smaller than n1 to avoid oscillations. Under these conditions Re-g~on 2 includes the zone where n < n • The software team now establishes
a new value for k2 (viz. k3) such thai I < k 3/a1.

_  
~~~S~~~— - _ S .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . S S -.-5— ~~~~~~ . ——- . 

SS ~~~~~

n

--—- ____5.~~~~ -5—,- S.~~S - _S ~~~~~~~~~~~~~~~ ~~~~ 5~~~~5- 5-5- .~~~~~~~~~~~~~~~r~~~~~~~~~~ --5 .- 5-S __S-5 - - —

transition takes place. Below n the error equation is described by an
equation simila r to tha t of Eq. (~. 9). The equation is

n(7) = n.3 exp((a 1-k3)(i-— 7 3)] fo r 1> 7
3

(5. 19)

Once again Eq. (5. 16) can be used to write an equation which describes the
corre ction beyond 1

3.

a k {exp((a 1-k3) fr- 73)] - fi ÷ n~ (,-3) (5. 20)

where

= k 171 + k 1(73-T 2) + 2~~ {exp((a 1-k 2)(7 2-7 1)] - 1)

which is obtained by substituting 7 for ~ in Eq. (5. 18). The three cases
are illustra ted in Fig s. 5. 2, 5. 3 a~id 5. 4. An initial error quantity of
n = 1 00 has been assumed in all cases.

A PL/I compute r program (see Appe ndix II for a listing and flowchart)
has been written which plots the number of remaining errors, the cumula-
tive corrected errors and the total number of errors. The calculated points
for the curve s in Figs. 5. 2, 5. 3 and 5. 4 were computed using this program.

5. 4 S~~nma~y

Many of the features of these models agree with the data reported in the
literature and the expe riences of program managers. Since basic data on
manpower deployment, e r ror ra te, the rate of error generation, etc., are
largely unavailable, testing the validity of the above models must
await further experimental result. Assuming the above models are valid.
we can inve stigate the economic constraints imposed upon Case 1. .An eco-
nomic break-even between rewriting the program and extensive debugging
is discussed in the next chapter.

38

5- - — - ~~ _ _ _ _ _ _ _

_ _ _ _ _
5-- -~~ S—~~~~~~~~~~~~~~~~~~~~ —5S_

no

(a) Unstable Model . Errors build-up
Indiscriminately.

:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(b) Controlled Model. Debugging is efficient.

(C) Oscillatory Mode).

Fig. 5. 1 Remaining errors plotted as a function of months of
debugging.

39

_ _ _ _ _


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 55~~~~~~~~~ —_ _ _

240

220

200

180
b

160
0

o 140
I.

4.w
120 4, Slope • 12.5 Bugs/Man—month

.~~~E
~~~80

60

40 Slope ~ 10 Bugs/Mon—month
20

0 2 4 6 8 1 0 12 14 16 18 20 22 24 26
Debugging effort In mon— months

Fig. 5. 2 Case 1 Unstable Model Controlled Subsequent ly.
(See Eqs. 5.7, 5.9,5.10, 5.11 , 5.12, 5.13 , 5. 15)

40

--- .~~~~~~~-. —

,__1 _._
~~~~~~~~~~~~~~~~_

._~~~~~_ - ‘S . 

j



~5~~~~~~~~ ._,. 5 .—~~‘——~~~‘——— —-——-. .—, ~~~~~~~~~~ s~_ .—5——.—w——.-__, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5 —--~~. ~~~~~~~~~~~~~~~~~~~~~~~~~ - -

- — .-.. - -5-——-—

I

\ /4

1

70 .

0

~ 
Slope 10 Bugs/Mon—month

I I I I I I

0 2 4 6 8 10 12 4 16 18

Debugging effort in mon—months
Fig. 5. 3 Case 2 The Controlle d Model.

(See Eqs. 5.7 , 5.9, 5. 10, 5. 16)

41

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


5-’ r’ -. m, r, v-r 5 - ~~~~~~ s~~~~~~~ -~zs. . ~~~~~~~~~~~~~~~

100 • 10 Bugs/Mon— months

70 tope s lO Bugs/Mon—month

~~~60

~~~~50

z 40 , / t
(I

30-
e

20~~~~

0 2 4 e 8 10 2 14 13 lB 20 22 24 26
Debugging effort In man—monlhs

Fig. 5 . 4 Case 3 The Oscillatory Model Oscillations Controlled af ter
the Fi r s t Bump. (See Eqs. 5.7, 5.9, 5.10, 5.16 , 5.17 ,
5. 1~ , 5. 19, 5. 20)

42


~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ .~~~~~~~~~~~~~~~~ -—--.~~~~~~ - - 5 5._S . -~~~~~~~~

CHAPTER 6

DEBUGGIN G COST MODELS

6. 1 Introduction

The problem of computing an economic break-even point looks easy at
first  glance. Howe ve r, it involve s modeling of the pe nalty which the custo-
mer will dema nd for any delay caused in getting the system working.* Based
on the models previ ously de veloped there is no closed form expression
which can be devised to calculate compensation because the re is no closed
form expression for the length of the penalty period. This is clear if we
examine the equation describing the er ror  buildup (c. f. Eq. 5. 7 with
n ‘ k 1/a 1). Since this equation is not linear, we have to compute the
penalty period for every value of n(r).  However , one can perform a para-
metric study and produce tables and/or graphs for the penalty period.

6. 2 Prqgramming_Economics Without Penalty

In Chapte r 2, we sta ted that ‘no program can be absol utely free of er-
rors. In othe r words, bugs cannot be elimina ced completely. The refore ,
the economic model includes the effects caused by a trace of residual er-
rors in the program. Although in most of the debugging expe riments the
errors  do not build up initially (as depicted in Case 1, Chapte r 5) we con-.
side r it to be true here and base our economic model, on this extreme case.
However, the model could be extended to cases where the buildup may oc-
cur sometime during the course of debugging. We assume that the errors
build up from n (initial error  content) to nt • After a transition at this
point (which is &e result of introduction of super-debuggers), the errors
fall to n1 whe re the next trans ition take s place (c. f. Eq. 5. 9). The errors
subsequently fall to a final value n2 w hich is the res idual number of er rors
in the program. The final value, nt,, which is achieved must resul t in a
satisfactory level of operational refla bility. With a knowledge of n’ , n4 and
n2 one can solve Eqs. (5.9) and (5. 12) and calculate the time required to
achieve the level of satisfa ction desi r ed.

We are not interested in computing the expenses prior to time 7 ’ (the
instant of time at which n(~r) has built up to n’ ) because our task is to com-
pare the cost of rewriting the program with that of further debugging. The
amount of money expended till r ’ has no influence on the alte rnative s that
will be resorted to. Evaluation of the time expended in debugging beyond
T ’ is carried out by solving Eq. (5 .12) for 7 .  Since r ’ has no signifi-
cance except for evaluating the penalty which is explained la ter, we may
move the coordinate axes to 7’ • For an error content of n we get

i - k’
1/a

’
1 \—~— I n j  , , ) (6.1)

a 1

*A contract with a penalty crause for late delivery explicitly state s the
delay penalty in dollars.

5 43 -

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5.5 _— —.5 .————-.-~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ - 5~ __
~~~~ S___~~~_ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

._‘ - .-_-S,—— -~~~~~~~~~~~ _~~~ - 5~~~~S - 5- -. ~~~~~~~~~~ -,-:-- ~~-55--~~~

.5

1

The time ii, f o r the errors to decrease from n’ to n 1 is known from
Eq. (6. 1) by fixing n n1. The refore

/ I I

/ n - k / a
—r— t n (~

— —
~

a 1 \
\

n - k 1 /a 1

After a transition at 7 = the error mode! is described by Eq. (5. ~~~•
Solving Eq. (5. 9) for 7 we get

I In
7 = + -

~~~
--

~~~~ 
In

~~
— .3)

(a 1 -k2)

By fixing n = n2 (the residua l numbe r of bug s in the program) and substitut-
ing for from Eq. (6. 2), Eq. (6. 3) may be rewrit ten as

=
(n1_-_k1/a ”\~

+ .~~ (6.4)
a 1 \~n - k1/a1)

(a 1 -k2) \, I

where is the time in man-months spent in reducing the number of errors
from d to n2.

For simplicity we will first formulate a model which doe s not involve
any penalty for delay. Subsequently we will include penalty terms for delay
and arr ive at a thorough analysis.

Let us say that the debugg ing cost per man-month is c • Thus the de-
bugging expense , Cd, incurred in going from n ’ to n2 is

0

Cd C T
2 (6 .5)

If c represents the cost of rewriting, debugg ing, and testing the program
then the break -even occurs when cd ~ c. Substituting for from Eq.
(6. 4) into Eq. (6. 5) we get for break-even

~~ ~~~~~~
: ~~~~~~~

+
a~~ k~

(6. 6)

Solving Eq. (6. 6) for n’ we get

44

~

5 5 5 ~~~~~~~~~ 5~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~~~~~ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ 5- ‘5-~

n’ = n~ exp
fa~

[~~~~k~
In -

k i r , r ,~~ \+ -4— ~ i _ e x p~~ a 1~~ ,~~ ~~~~~~~~~~~~~~~~ (6. 7)
a~ ~ L La i _k z \ 11 o j j j

Using Eq. (6. 7) a curve can be plotte d with n’ as a funct ion of c/c 0. Since
c is the total cost of rewriting and is the debugg ing cost per man-month
the ratio c/c0 is in man-months. push a curve is portrayed in Fig. 6. 1.
This curve has an asy~nptote n’ = k 1/a 4 . It is intere sting to make note of
the outcome if n’ ‘~~ k1/a1. Under suc’li a condition we only repeat the ear-
lier situation where n0> k1/a1. The values assigned to k1 and a1 by thesuper-debuggers are unsatisfactory , resulting in a furthe r buildup of errors.

6. 3 Economic s with Penalty

To understand the economic s involving penalty we can construct a
hypothetical example. We shall consider a program of 10, 000 machine
language words having an initial error content equal to 1% of the total
lines of code as observed by Shooman and Bolsky [6) in their expe ri-
ment. Let us begin by assuming the following values for the parame-
ters in the foregoing equations.

n0 = 100 (1% of the total number of words), k 1 = 10, a1 = 0. 125

= 12. 5, a = 0. 035, k2 = 0.15, n1 = 20, n2 = I , k1/a 1 = 357

= 80

Reference [10] contains an analysis of the development costs of the Apollo
Spacecraft guidance and c ontrol compute r software. C omplete statistics
on the cost of software deve lopment were discussed in the report. The dc-
velopment cost per machine word range s from $60 on the lower limit to
$200 on the upper limit depe nding upon the complexity of the module, The
development cost include s the cost of writing, de bugg ing and te sting. De-
bugg ing expense was rated at $3 000 per man-month.

We make a few more assumptions which are listed below.

45

.5— “*lsak..,. - _____ _ —‘-.5-— - .5 - .-——- .5 —5- —5— S ..- .5t.5

.5 . 5 5 5 -~
’

~ 5 5~~~~~~~~~~5-._S ~~~ -

*Numbe r of men employed in Region 1
(i. e., n ’~~n1) 8

*Numbe r of men employe d in Region 2
(i.e., n < n 1) 4
Contract period = I 8 Months
Writing period 9 Months
Debugging and Testing 7. 5 Months
Grace Period = 1. 5 Months
Debugging expense $3000/ Man-Month
Development cost = $ 50/Word
Profit = 20% of development cost
Penalty per month of delay = 1% of Contract price

The development cost works out to be $500, 000. With 20% profit the con-
trac t price is $600, 000. Penalty is fixed at $6000 for every month of delay.

In orde r to evaluate penalty it is essentia l to know the amount of time
expended from the commencement of debug ging. Using Eq. (5. 7) we can
wr ite the effort (man-months) wasted in building the errors up to n~ as

- k1/a1\
7 t n t — 1 (6. 8)a1 - k 1/a1)

Since the number of men employed are 8 and 4 in Regions I and 2, respec-
tively, the amount of time (months) spent from the start of debug ging is

7 + 7 7 -T **
8~~~~

2
4

1 (6.9)

Let us conside r an extreme case where & = 350.

Using Eq. (6..8) we get i ’ = 20. 82 man-months

From Eq. (6. 2) we find = 110. 70 man-months

and from Eq. (6.4) = 136.70 man-months

Using Eq. (6. 9) T = 22. 94 months

Since we have assumed a writing time of 9 months the total period
22. 94 + 9 = 31. 94 months.

‘

~~~ For further details on Reg ions see Chapte r 5.
is the number of man-months expended in reduc ing the errors  from n’to n2. Hence 7~ is a subset of 

~2

46

___________—. 
______________________________________________



~ 5.5.5S5-5 ~55-~S,5-~rn5- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 - - -~~

Penalty period = Total period - Contract period

= 31.94 - 18= 13.94 months

Extensive debugg ing cost = $3000/man-month x 136. 70 man-month s

= $4 10, 100 [using Eq. ( 6. 5) 1
Penalty in Dollars = $6000 x 13. 94 = $83, 640

Further debugg ing the refore costs $41 0, 1 00 + $83, 640 = $493 , 740.

On the other ha nd, upon finding n’ = 350 if the decision had been to re-
write the n the total time spent from the beg inning of the contract would be

first  writing pe riod + 7’ /8 + redevelopment period.

In orde r to reduce the penalty the software manage r expedite s the pro-
cess by a month and a half thus resul ting in a development time of 1 5 month s.
Therefore

Total period = 9 + 2. 60 * i- 15 = 26. (~0 months

Penalty period = 26. 60 - 18 = 8. 60 months

Penalty in dollars = 8. 60 x $6000 $51, 600

Redevelopment cost + penalty = $500, 000 + $51 , 600 = $551 , 600

6. 4 Summary

In the foregoing example it is seen tha t extensive debugging works out
to be more economical compared to rewriting although the e r rors  ha ve
buil t up indiscriminately. In practice such a buildup is unthinkable. How-
ever, we cannot ge neralize that debugging is more economical because a
decision depend s upon the magnitude of the various parameters such as de-
velopment cost, penalty charge s , etc. The eq uations discussed are , how-
eve r, applicable to all programs.

*T ’/8 2. 60.

47

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



.5 -5~~~ .5.5 — -~~ -~~~~~~~~~~ -- .5 rw—- 5-
~~~~~~

5 - 5 -
~~~~~ 

5-
~~~~ -~~

n/nO k’
Asymptot e = I

I

3.7 -
~,3 57 01 fl0— _ — _ — — — — — — — — — — —~~~~~~~~~~~

3.4 -

Rewriting
Region .A~3.1 -

Debugging
2.8

-

/

Region

2.5 -

2.2 -

. 9 -

(.6 -

13

(I I I I

0 50 70 90 (00 (30 (50 (70 (90 2(0
Number of man - month

L Rewriting cost/Debugging Cost per m~~-month .

Fig. 6. 1 Demarca t ion be tween debu gg in g and rewr i t ing reg iozis ”(see Eq. (6. 7))

. 1

_ _ _ _ _ _ _ _

48

L ~~~~.~ i.iii ~:~~~- ~~~~~~~~~~~~~~~~~~~~ — - 5 - — ~~~
.5.5-

CHAPTER 7

CONCLUSION

7.1 Summary

The development of an er ror model which accounted for error growth
progressed through several stage s, and culminated in the complex model
developed in Chapter 5. At this point we are unable to justify the validity
of those models because relevant experimental data is unavailable. How-
eve r, basic ass umptions and overall form of the results seem realistic.
The model development led to the analysis of three cases, Assignment of
insuff iciently expe r ienced debuggers results in a situation as depicted in
Case I while a contrast to this is observed (Case 2) if superior debuggers
are assigne d to the same job. Ve ry of ten programmers work on more than
one project at a time and once the errors in one project are well under con-
trol the superior debuggers are assigned a new task which may subsequently
result in an error buildup, and this is explained by Case 3.

7. 2 Suggestions for Further Work

Having evolved reasonable error models, the next step is to evaluate
the va r ious pa rame ters of the models, and test the validity of the model as
a prediction test. In order to reduce the ma thematical complexity, the
change of manpower in all the models has been assumed to be abrupt. In
practice the change is gradual.

More ove r the growth-decay parameters (a ’s and k’s) are complex
func tions of the debugging time i , manpowe r variation and rate of change
of e r rors in the progra m. In orde r to formulate these functions it is neces-
sary to study the changing manpower and the rate of error removal at eve ry
instant of debugging time in many projects. Another method of developing
these func tions is to measure the above parameters of individual program-
mers, Once these are available for eve ry programmer, the parameters
for the team could be established by including a mutual interaction coe ffi-
cient (a factor due to coordination problems be tween programmers). Once
these function s for the team are available, the error equations discussed
in Chapter 5 could be applied to obtain a practical estimate of debugging ef-
for t required for any project.

__ __ _
5 :.55.5~~~

- , ~~~55 5.5 5~ 5-_.5.5.5.5.5 .5.5_.555~ 5.5_S .55~___~~5~ 5-_55-S5

.5-5 - _______ - - . 5* ~~~
. -5

APPENDIX I

A summa ry of the ba sic models and assumptions of Chapters 4 and 5
appear in Table A-I below.

TABLE A-I (Summary of Error Models)

BASIS EQUATION Eq. (4.3)

dn(r)
dT g c

n (’ r = 0) = n 0

CASE EQUATION SOLUTION

I. Gene ration and
Correction
Proportional to
Detection 5

rg(’r)= a~~
rd(7) A(T)= $(o._ 1)rd (7) If a < I

n(’r) is a decreasing
function

r (T)=
~~

r
d

(
~
r) If a > I

n(T) is an inc reasing
func tion

2. No gene ration

rg (r) = 0 1~1(7)= -f3 r
0 n(’r) =

r (T) = ~~
rd (1)

n
rcorrection Detectioni 0

LDetection = Constant
-J

.5 - .

P 0

3. No gene-ration -~~K ~rg (’r) = 0 n(r)= -$K1 nfr) n(r)= n0e
r (’ r) =

~
rd(T) n

rd (r) = K ()

Icorrection Detection 1 __________________LDetection Error PresentJ

50

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~5-



_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _  _ _ _ _ _  _ _ _ _ _
CASE EQUATION SOLUTION

4. Gene ration
Proportional to
Produc t of Errors
Present and
Detection

ar~~r g (r)  a r d (r ) n(r)  n(r)=Ean(7)_blrdft) n(7) (n0-b/a)e °+b/a

r (7) = b rdft) For rd(r)= const. = r0 If n < b/a then n(r) is
C 

• 
a-i t~nverted exponential

n(r) fan(7)-b)r0 n

[

~~~~~~~~~~~:~~~~~~~~~~~~~~~~ to]
Detection If no

> b/a then n(T) is
a growing exponential

no~~~~~~

5. Generation
Proportional to
Number of Er-
rors Present
and Correction
is eithe r Man-
power or Detec-
tion limited, n(7) > fl

1

r g (r) = a 1 n(i’) 1(r) -k 1+a 1n(7) n(i)= (n0-k 1/a1)e t +k 1/a1
for n(7)> ~

. (same form as Case 4)

k 1 for

+ a1n(r) n(7)n1exp[(afk2)(.r-
.r
1)1k2n(7) for fOr n(T) <

n(r) < n~
(i) If I < k2/a1, then

n(r) decays exponen-
tially as shown in
Fig. 5 .Ib

(ii) If I >k /a , then
n(T) os~ illLtes as
shown in Fig. 5. Ic.

51

—

~

-

~

—

~

—

~

— -~~~— .

- 5--—.-- .5
~~~~~~~~~~ S S ~ -.

APPENDIX II

/ , GET / ~~~ 
~ 

& ARE (0:500) ARRAYS

,1r n , n, n 1, n ,,, n~ / DGRAPHT INTERVAL BETWEEN
/ ‘ k / PLOTTED POINTS.
/ a1, a1, I’ 1’ 2’ / DEFAULT I

k3, CASE, DT, / DT= REGULATES THE TIM E INTERVAL

DGRAPHT , FIN / IN WHICH THE 
THE SMALLER THE

DT THE MOR E PRONOUNCED THE
~~~~~~~~~~~~~~~~~~~~ TRANSITIONS WILL BE.FOR BEST

RESULTS
DTn DGRAPHT/ 1 0

FIN= THE NUMBE R OF POINTS TO BE
PLOTTED.
DEFAULT= 50

CASE=EITHE R I OR 2 OR 3 DEPENDING
YES UPON THE PARAMETERS

CASE I E 53 CASE= 1

ACCEPTS fi
flO, t n f I fl2 J (NO
a 1, a1, k1, k1, k 2 ’ll
DT, DGRAPHT, II
FIN AND COM- I I
!UTES n, n

~
&~JJ

CASE= 2 [
J THE PROGRAM STOPS ON

CASE AGE 55 ~ THE ENDFILE CONDITION
ACCEPTS I
n , n , n ao l 2 ’ l NOk , k7 DT,
DGRAPHT,

Fig. A2. I The System Flowchart
_ _ _

C t
Note :

CASE 3 ~AGE F,7 The o~~e r.urn bers adjacent to each
hex in Jic.~te the location of the flow-

ACCEPTS
~o’ ~I’ chart portray ing the case in detail.

n
2’

n3, a 1, k 1, k
2’

k 3, DT. DGRAPHT ,
FIN AND COM-
PUTES 5, fl.~ P.’

PRINTGRAPH
L

U
PLOTs S.n 5 i n t

I I AS A FUNCTION
I I OF DEBUGGING

LI
TIM E T

52

-.,

~

— ~~ _ _ _ _

—.5-- .5.5 - .5 —.5 . 5--

I

CASE 1

o~~ O

n0~S k 1/o1

o~~ O YES
S In� ku/Qi

I PUT
I ~ k2/ I LLEGAL DATA

VALUES

NO
‘F:

12 = 0

= (n 0-k , /o ,) exp(o 1r +k 1 /o1
nc(1) = kir

t : Ts 8 T
= nc(i)+n(i)

=

YES

NO THE NO BRANCH IS
TRAVERS ED WHEN THE
FIR ST TRANSITiON

=
OCCURS AT r~

Fig. A2. 2 Part I of the f lowchar t f o r CASE I

U

53

_ _ _ _
_ _ _

-~~~~~~~~~~~~~~~~~~

.5—’--.— ‘. .— -~~~~~~~~~~~—-——~~5-— .— - .

= (fl’—k~/o’,) exp[du(r-r1]+I(,/a~
flc(.Q) = k u r’+k~(r- ri

‘F = T+AT fl 1(Q) = fl(9)+ flc(Q)
I 0 = ~~~~II

YES
~~~~~~~~~~~~~ ThE NO BRANCH ISNO TRAVERSED WHEN THE

4~’- 
1SECOND TRANSITION

‘F - ‘ F  
[OCCURS AT n1

n( Q) = flu

n(~) = nu exp[(au_k2) (r-r,)]
nc(1~ ku r’+ k’,(ri — r’) + k2 n, /(o’i-k2){exp[(a~— k2)(r— ru)]— I)
fl1(Q) =

T T + A T 1
12 : 12+1 YE~~~~~~~J?

(~ETUR~’\
~~~AND~~1

‘H

Fig. A2. 3 Part 2 of the fl owchart for CASE I

54

I

—— ---.5w .5— -

CASE=2

O~~ O

n0�k ,/o,

I k2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ILLEGAL DATANO 
VALUES

r = 0
1= 0

_ _ _ _ _ _ _ _  
nU) = (no-.k,/o,) exp(o 1r)+ki/a u

r T+AT flc(O) = k1r
j  0+ ’ nt(Q ) = flc(0)+fl(O)

YES 
THE NO BRANCH IS

NO TRAVERSED WHEN
A TRANSITION

F OCCURS AT n~
~ 

r~~ T

(!)
Fig. A2. 4 Part I of the f lowchar t  for  CASE 2

55

‘
_5___ —.5 1 

.5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .



_______________ .5 - 5~~5 .55  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---.5—--..— -_ -5----—-  .-,. . .- ._——-—,.--~ — 5S~ .

H _ _ _ _ _ _ _

= n1 exp[(or k2)(r— r,)]
nc(Q) : k,r1 +k2n,/~3i—k2){exp[(au

_ k2)(r_tj )] — i}
nt(L) =

( RETURN
‘F _____

(
~
)

Fig. A2. 5 Part 2 of the flowchart for CASE 2

56

~~~ ~~~~~~~~~~~~~

.5- .5 ~~~~~~~~~~~~~~~~~ _ .- , —-~~~-—.5-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . , . 55_5~~~~~~~~~~ .55-~~~~~~~~~S~~~ . ‘-,

CASE 3

no? kilo,

I �k~/oi YES

PUT ILLEGALn2� ki/o , DATA VALUES
I�k3/o

NO
T : 0

1:0

nW = (flo—ku/o u)exp(air)+ki/o i

ncU) = k u r

fl t(D) : flc(I)+fl(9)

‘F : T+~~T

YES ~
ITHE NO BRANCH IS

NO ITRAVERSED WHEN

~~~~ THE FIRST TRANSITION
= ‘F LOcCURS AT n1

n(O ) =

3

Fig. A2. 6 Part  I of the f lowchart  for CASE 3

57

_________ - — -



I

P

n1 = ~ i ~ p[o i_ k2~ ’F— ’ Fi ]

____ _____  

flc(~
) = k,r,+ k2n, /(ai— k2){exp[(au- k2)(r_ r,)}. i}

‘F = T+AT nt(A) flc (L)+fl(0 )
1: 1 2 + 1

I NO THE NO IS TRAVERSED
_ _ _ _ _ _ _  WHEN THE SECOND

TRANSITION OCCURS
T2 :T 1 AT n2

n(Q) : fl21 
—

(fl2_ k u /o i) exp[o i(r _ r2)~ +k ,/a,

~c(J) k1r,+k2n,/(o1— k 2) {exp [(o,—k~~t�_ri} i}

+ k1(r — T 2 )

I

YES THE NO BRANCH IS
NO TRAVERSED WHEN

THE THIRD TRANSITION
4 OCCURS AT n3

Fig. A2. 7 Part  2 of the flowchart  for  CASE 3

58

_ _  .5 —~~.-- —------5. . - ’- — — - . 5 _ S 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A


‘
‘~~~~~~~~~~~~‘ 5- —~ ~~~~~~~ .- _

~
.5 ___ • .5

~
_
~~~___•..5 -

‘ 1~ 
- —5- 

~1

T3 = T 3
n(12) : n3

ri (O ) = fl 3 exp [(o ,—k 3)(r_ r
~]

nc(O..) : k3n3/(n,_k 3){ exp[(ou —k 3)(r— r3)J_ I}÷ k1r1

+ k, (‘F3—r2~~ 
k2n ,,4o,— k2 }{exp[(ou_ k2)(r2— r~ )] — i}

LIE
~~~~~~~

>

rRETURN ~
“\

~~~~~‘FI ’ ’FV’F3_J

I
Fig. A2. 8 Part  3 of the flowchart for CASE 3

_ _ _  

_ _  _ _ _ _  _ _

_ _ _

— ‘—5- —.5-_.5--- —.5-—. .5— . 5--  -_ --~~~-~~~~~~~~ —- -—-.5— -~ -~~~~~~~~~~~~~~~~~~~



—_.~~~~~~~~~~~~~ —- -_._ --— 
~~~~~~~~~~~~~~ . - - . . 

— — .~~~~~~ —~~~~ _ — _ 5 -

(~~~T) UT~~~~RA~?1~ ER~~~‘—r:——:~_5~J ARE: NO, NP, NI , A t , A lP ,
~~~~~~~~~~~~~ KI , K IP , K2, DT , DGRAPfl T,

I FIN
AI <0

NO <K 1/A 1

AI P< 0 YES

NPSKI P /AlP
PUT

>K2/A ILLEGA Lt_ I DA TA VALUES

RET URN
COUN T= 0
N TA B=0
N~ TAB= 0 START OF THE DO LOOP
NT TAB= 0 (LABELED LOOP) WHIC H
LOOP: COMPUTES N, NC tE NT

T=DT

6

YES
STAG E=0 1

N= (NO-KI FAt )*EXP(AI *T)+K 1 /At
NO NC= Kl *T

YES STAGE= l

N=(NP-Kt P/Al P) *EXP(A 1P *(T~
TPRIME))+KI F / AIP  NO A

NC=KI “TPRIME+KIP *(T-TPRIME)
STAGE= 2

N=N I *EXP((A 1 P-K2)” (T-TI I)
NC= KI *TPRIME+Kt p*(Tt -TPRIME)

÷( K2*N 1 )/ (K 2_ A I P) *(I  -EXP( -

(Al P-K2Y~(T~ TI ))) Fig. A2. 9 Part I of
1 the f lowchart  for

_____________ CASE I which is

[ NT~ N +NC J le t e

60

- 
—S. -- 

~~~~~~~~~~~~~~~~~~~~~~~~~

~

_ 5 ’ _ 5.

~

_,1lII

~

. _ _ _ _

~~~~~~~~~~~~~~~~

__

~~~~~~

s

~~~~ 

~~~~~~~~~~~~‘


.5 5-’ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - .5-.— . 5-— .. ’. 5- 5-.5.55_5 - S . 5 -~~~

5

‘ S’

~~~
-....,. ~, COUNT= COUNT +1

N TAB(COUNT)~ N
NO N~ TAB(COUNT)=NCNT TAB(COUNT)= NT

PLOT TIME=PLOT TIME+
— DGRAPHT

NO

(N- NP) *(LASTN- NP)<0
YES G E lSTA - 

THE FIRST
TRANSITION
HAS

NO YES OCCURRED
TPRThIE=T AT N=NP

(N-N I ) ~ (LASTN-Nl)<0 STAGE= I

THE SECOND
TRANSITION YES ______________________HAS
OCCUR1~ED STAGE= 2AT N I T I = T

T~ T+DT J

T>FIN NO

GRA
~~~

’1YES r GO TO
6J4

~ HIS COMPLETES

PLOTS N , NC & NT
_ AS .4 FUN~~TION OF T H i~ig. A2. 10 Pert 2 of the flowchart

T for CASE I which I. compatible
(R E T U R N \ with the compute r program
~1~_T P I~ I ME ._

~ri
_J

61

_________ __

I i

_ -~

TABLE A-2
CORRESPONDENCE BETWEEN ACTUAL PARAMETERS

AND PROGRAM PARAMETERS

The flowcharts of Figs. A2. 1 to A2. 8 summarize the text in this report
(i. e. the paramete rs are the same as in the text). The program is written
in the upper case alphabet since the lower case alphabet is evidently not
available. The correspondence between the actual parameters and those in
the computer program is as follows :

ACTUAL PARAMETERS PROGRAM PARAMETERS
n. NO0

NP

n 1 Ni

N2

N3

ii NC

NT

a 1 Al

AlP

Ki

K1P

k2 K2

k3 K3

T t TPRIME

T
1 Ti

T2

T3

A flowchart compatible with the program will require a much greater
level of detail. Figs. AZ. 9 and AZ. 10 preaent such a flowchart for case 1.
The flowchart s for the remaining cases are analogous and are not included.

62

______ S
I

~~~~..—
.
~~~~ ‘,.— — —~~~~~—-— - . -~~~~~ _~~~~ .———-‘,—.— . .——-~~~~~~~~ -——— .— .5—- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~


(STR ING RANGE ,SU BSC RIPT RANGE) :
MODELS: PROC EDURE OPTIONS (MAIN) ;

/* EXPLANAT IONS OF DAT A VARIABLES

INPUT VARIABLES

CA SE L THE CORRESPONDENC E BETWEEN
NO,NP,N1,Al,AIP,Kl, THESE VARIABLES AND THOSE
l(j P,K2~ OT,DGRAP HT,FIN IN THE TEXT (WHICH ARE

WRITTEN IN LOWER CASE)
FOR ALL CASES IS SHOWN IN

CAS E 2 TABLE A—2 ON PAGE 62.
NO,Nl,A 1 ,KL,K2

CA SE3
N0,Nj ,N2,N3,Al,K L,K2,K3

DGRAPHT INTERVAL BETWEEN PLOTTED
POINTS. DEFAUL T = 1

DI REGULATES THE TIME INTERVAL
IN WHICH THE EQUATIONS ARE
EVALUATED. THE SMALLER THE
VALUE OF DI THE CLOSER THE
TRANSITIONS WILL BE. FOR
BES T RESULTS DT =DGRAPHT/1O.

FIN THE NUMBER OF PO INT S TO BE
PLOTTED. DEFAULT = 50.

********** EXAMPLES OF DATA CARD S ***********************
CASE =2, No=100, ici=iO, 1c2=.2, N1=25, A 1z .0665 ;

CASE ~~~, NO 1O~., 1(1= 10, A 1 .026, N1=30, K2 .O1, N2 40,
N3 20, K3z .15 ;

** * * * * * * * * * * * * * *$* * * * * * * * * * *$* *1

63

DECLARE (NO, NP, Ni, Al, AlP, 1(1, K1P, 1(2, 1(3, N2, N3)
FLOAT INITIAL 10),
(N_TAB, Nc_TAB, NT_TAB) (0:500) FLOAT (16),
(I, TPRIME, Ti, 12, 13, N, NC, NT) FLOAT (16)
INITIAL (OEO);

DECLARE (COUNT, LASIN, DGRAPHT, DT , FIN, PLOT_ TIME)
FLOAT , 1 FIXED BIN (31),
STAG E FIXED BINARY (31) INITIAL (I);

/* PLOT_TIME IS THE INSTANT OF TIME AT WHICH THE FUNCT ION
IS PLOTTED , WHEREAS T IS THE INSTANT OF TIME AT WHICH
THE EQUATIONS ARE COMPUTED. THE TIME INTERVAL IN WHICH
THE EQUATI ONS ARE COMPUTED IS MUCH SMALLER THAN THE
INTERVAL BETWEEN THE PLOTTED POINTS I TEN POINT S ARE
COMPUTED, AND ONLY CNE PLOTTED). T(< PLOT .TINE IS
DESIRED BECAUSE A CONTINUOUS CHANGE OF THE VARIABLES
N, NC AND NT IS AVAILABLE (IN THE ASSUMED INPUT DATA).
A SMALL T IS EQUIVALENT TO A DAY—TO—DA Y PROGRESS IN A
REAL—LIFE SITUATION, WHILE A LARGE PLOT_TIME IS EQUIVALENT
TO A CO—ORDINATE IN A PERFORMANCE CHART OVER A LONG
PERIOD, SAY ONE YEAR. THE RECORDING OF THE RESULTS,
HOWEVER, MAY TAKE PLACE EVERY 15 DAYS. */

64

1.-—-- ~~~~~~~~~~~~~~~~~~~~ .- — . ,—, -
~~~~-~~~~~

--
~~~ -—-, .~~~~ —- .-— ~~~~~~~~~~~~~~~~~~~~ .5— - . -—.— - —


pIp-’—-. .5 ~~~~~~~ ‘-~~~~~~~~~~~~~1~~~~~ ”—T ~~~~~~ . - ‘.-~~~~~~~~~~~~~~~~ -.—.- . _____
.~~~

r

~~~~~~~~~~~~~ 

—-‘-5-5- -

I
ON ENDFILE (SYSIM) BEGIN;
PUT PAGE EDIT (‘END OF DATA ENCOUNTERED. ‘, ‘ IF ANY ‘II
‘DATA SETS SEEM TO HAVE BEEN SKI PPED, CHECK TO SEE IF YOU’
I I  ‘ PUT IN THE SEMICOLON ’, • ******TERMINATING RUN ****

(COL (1),A);
STOP ;
EN!);

ON NAME (SYSIN) BEGIN;
PUT PAGE EDIT I’ ERROR ***** ONE OF THE INPUT DATA ITEMS ‘
II ‘IS NOT AS EXPECTED, THE ONLY LEGAL DATA ITEMS ARE :‘ ,
• NO, NP, Ni, NZ, N3, Al, AlP, 1(1, K1P, 1(2, 1(3, Dl, FIN,
I $’OGRAPHT ’,
• THE LAST THREE BE ING OPTIONAL ’, ‘PR OBABL E CAUSE 15’ I I
• KEYPUNCH ERROR IN PUNCHING THE DATA’, • THE PART WHICH ‘
II’CAUSED THE TROUBLE IS:’IIDATAFI ELD,
• *****.TERNINA 1ING RUN *****‘ ) ( A,SKIP);
STOP ;
END;

ON ERROR SNAP BEGIN;
ON ERROR SYSTEM;
PUT SKIP (4) LIST I’ AN INTERNAL PROGRAM ERROR HAS ‘H
‘OCCURED. PLEASE SHOW THIS PRINTOU T TO S. NATARAJAN ’);
PUT SKIP LIST (‘ONCODE= ’, ONCODE);
PUT SKIP (41 DATA;
ST OP ;
END;

/* INITIALIZAT IONS */
T=O; FIN=50 ; DT=1E—i; DGRAPHTzL;
DO WHILE (‘I’B);
GET DATA (NO,NP,N1,N2,N3, Al ,AIP ,K1,KIP ,K2,K3,DT ,DGRAPHT,
CASE, FIN) ;
STAGE=O ;
1* STAGEzO INDiCATES WE ARE BEFORE THE FIRST TRANSITiON
STAGE I INDICATES AFTER FIRST TRANSITION

S ST*GEz2 INDICATES AFTER SECOND TRANSITION *1
PLOT . TIMEzDGRAPHT ;
N_ TAB (O)=NO;
NC...TAB (O)zO ;
NT _TAB (0 aN_TAB ( 0) ;
LASTNaN...TAB (O);

1* LASTN IS THE PREVIOUS VALUE OF N */
IF CASEzI THEN CALL CASE L ;

ELSE IF CASE=2 THEN CALL CASE2;
ELSE CALL CAS E 3;

END ;

65
a

~~~~~~~~~~ .5.5- -— 

_ _ _ _ _ _ _ _ _ _ _ _

h.____~..5 ~~~~~~~~~~~~~~~~~~~~~ ~~~ - -.5-- .
~~~~~~~~~~~

—5- -- -- — -‘-5 —5-- -.S~-5 ~ — -~~~~ 5- s 5-~~~~~~~~~~ - — -~~~



CASE I :
COUNT=OEO;
N_ IAB=~)Ei; NC_TABaOEO; NT_TAB=OEO;
PUT PAGE EDIT (‘CASE L’UC01 44 ,A ;
PUT SKIP (3);
PUT EDIT (‘NO =‘,NO,’NP z’,NP ,’Nl = ‘,Nl)

(CO L ( l4 ) ,A ,COL ( 1 .9 ) , F ( 3 ) , C O L ( 3 8 ) , A , C O L (4 3 ) , F (3 ) ,
C O L ( 6 3 ) , A , C O L ( 6 8 1 , F ( 2 1 )
( ‘ A t  = ‘ ,A I, ’A i P ‘ ,AI P, ’Ki ‘ ,K l)
( C O L ( 14 ) ,A , C O L ( 19 ) , F ( 5 , 3 ) , C O L ( 3 8 ) , A , C O L ( 4 4 ) , F ( 6 , 4 ) ,
COL (63),A,COL (68),F( 2))
(‘KIP ‘,K LP ,’K2 ‘,K2, ’DT z I ,DT )
(CO L (14),A,COL (2O),F(4,I),CO1(38),A,COL(43),F(5,3),
COL (63),A,COL (6d) ,F(5,3))
(‘DGi~APHT =‘,DGRA PHT,’FIN =‘,FIN)
(COL (L4),A,COL (24),F(l),COL (38),A,COL (44),F(2U;

PUT SKIP I ) ;
IF IA I<=O) I (NO<=Kt/Al) I (ALP=0) I (NP> K1P/A1P)
TH EN GO T O ERROR ;
GO TO RESUME;
EK~ 3R: PUT SKIP LIST ( ‘ ILLEGAL DATA VALUES, SKIPPING S E T ’ ) ;
RE TURN;

RESUME :
LOOP : DO T= OT TO FIN BY DT;
/* COMPUTE THE EQUATIONS *1
IF STAG E zO THEN DO;

N = ( N O — K i / A l ) *  E X P ( A L * T ) +  1(1/41 ;
NC= K1*T;
END;

FLSE IF STAGE=1 THEN Do;
Nz( NP—KI P/A IP) * EXP(A IP* (T -TP RI ME I I  • KIP/AIP ;
NC=K1*TPR IME • K1P* (T—TP RIM E);
END;

ELSE 03;
N = N L * E X P ( ( A L P — K 2 ) * ( T — T 1 ) )  ;
NC=K1*TPR IME + KIP* (T l—T PR IME)  + ( K 2 * N 1 )/ ( K 2— A I PJ *
(t—EXPHA LP— K 2)* (T—Tl ))) ;
EN!);

66

- -— .5 — 

._5..5._ ___AS. . S . - . 55 
~~

5 5 -  —S.---.S-- — —----S, 55-5. 5-



1* IN ANY EVENT */ NT=N • NC;
IF T>PLOT _TIME THEN DO; 1* IT’S TIME TO RECORD ANOTHER

SET OF POINTS FOR LATER
GRAPHING

COUNT=COUNT + 1;
N_ T4B(COUNT ) = N;
NC_TA B (COUNT ) = NC ;
NT_TAB(COUNT) = NT;
PLOT_TIME PLOT_TIME + DGRAPHfl
END;
IF STAGE = 0 THEN IF (N—NP)* (LASTN—NP )<sOEO THEN DO~
1* THE ERROR S HAVE INCREASED TO N’ WHICH CORRESPONDS TO

THE FI RST TRANSITION IN THE ERROR EQUAT ION • *1
TPR IME=T;
STAGE = 1;
END ;

ELSE ;
ELSE IF STAGE = I THEN IF (N—Nt) *(~ 45Tp4_~~ )<=OEO THEN DO;
1* THE ERRORS HAVE DECREASED TO Ni WHICH CORRESPONDS TO

TH~ SECOND TRAN SITICN IN THE ERROR EQUATION. *1
STAGE = 2;

END ;
LASTN=N;
END LOOP;
CALL PRINTGRAPH;
PUT SKI P DATA ( TPRIME, Ti);
END CASE I ;

5 - -  1



55.5 ~_ ___5~ ~‘5-5-5-~ ~S_5_ ~__~ ~-55_?S 5- ““ ‘-‘~~‘“ ~I?P’~~ ~~~~~‘ ‘ i”’ ‘‘r-—, ,r .n~.~.•W; - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

CASE2:PROC ;
COUNTzO;
N_TABzOEO; NC_TABzOEO; NL.,.TABZOEO;
PUT PAGE EDIT (‘CASE 2’)(COL(44),A)
PUT SK!P(3);
PUT EDIT (‘NO z’,NO,’NI z’,Nl,’A l =‘,Ai)

(COL (14) ,A,COL(19) ,F(3) ,COL(38) ,A,COL (43) ,F(2
COL(63),A,COL (68) ,F(6,41)
(‘1(1 z’,KI,’K2 z’,KZ, ’DT z’ ,DT)
(COL(l4) ,A,COL(19) ,F(2) ,COL(38) , A ,COL (43) ,F(5 ,3),
COL(63),A,C0U68),F(5,3))
(‘FIN z’,FIN,SDGR APHT z1 ,DGRAPHTI
(COLU4),A ,COL(20),F(2),COL(38),A,COL(48),F(l));

PUT SKIP (6);

LOOP : DO Ta 01 TO F IN BY Dl;
/* COMPUTE THE EQUATION S *1
IF STAGE = 0 THEN DO;

N= (N0—Kl/AI)*EXP (AI*T) + 1(1/Al ;
NC =

END ;
ELSE DO;

NaN1*EXP ((At—K2)*(T—Tl));
NCZKI*TL + (K2*Ni)/(K2_Al)*(1EO — EXP ((Al—K21* (T — TI)));
END;

N T N + NC;
IF T>PLOT_TI ME THEN DO; /* IT’S TIME TO RECORD ANOTHER

SET OF POINTS FOR LATER
GRAPHING *1

COUNT=COUNT+1;
N_TAB (COUNT) aN;
NC_ TA B(CO UNT) NC ;
NT_TAB(COUNT)—P4T;
PLOT _TIMEZPLOT_TIME+DGRAPHT;
END;

IF STAGEzO THEN IF (N—Ni1 * (LASTN—Nl)<xOEO THEN Do;
/5 THE ERRORS HAVE DECREASED TO NI WHICH CORRESPONDS TO

THE FIRST TRANSITION IN THE ERROR EQUATION. */
T1~ T;
STAGEa1;
END;

LASTN—N ;
END LOOP ;
CALL PRINTGRAPH;
PUT SKIP DATA(TI) -

END CA S E2;

68

~

‘-5- S5.5’~ 5, ~~~~
-

. 5’_--. 5 5 --. - 5--. .-

1

CA SE3:PROC;
DECL ARE (NCT2, /5 =NC (T2) 5/

NCT3 /**NC(T3) */) FLOAT INIT(OEO);
C DUN Tao;
N_ TA B OEO; NC_TABaOEO; NT..TAB=OEO;
PUT PAGE EDIT (‘CASE 3’)(COL(44),A);
PUT SKIP (3);
PUT EDIT (‘NO =‘,NO,’NI =‘,Nl,’N2 = ‘,N2)

(COL (14) ,A ,COL (l9) , F (3) , C O L (3 8) , A , C O L (4 3) , F (2) ,
COL (63) ,A ,COL (68) ,F(2))
(‘ N3 =‘ ,N3, ’A 1 = ‘ ,Ai , ’ K l =‘ ,Kl)
(CQL (14) ,A ,COL (j 9) , F(2 1 ’ ,C O L (3 8) ,A , C O L (4 3) , F (6 ,4) ,
COL(63) ,A ,COL (68 1 , F (2))
(‘1(2 =‘,K2, K3 =‘,K3,’DT =‘,DT)
(COLt 14) , A,COL (19) ,F(6, 4) , COL (38) ,A ,CO1(431,F(5,3)
COL (63) ,A ,COL (68) ,F(5 ,3)
(‘FIN =‘,FIN ,’DGRAPHT ‘,DGRAPHT)
(COL(14) ,A,COL (2O),F(2) ,COL (38),A,COL (48) ,F(I));

PUT SKIP (6) ;

LOOP : DO Ta Dl TO F IN BY OT;
/5 COMPUTE THE EQUAT IONS 5/
IF STAGE =0 THEN DO;

Na(NQ~K l /AL)* EXP (A1 * T) + 1 (1/Al;
NC =K I *T
END;

ELSE IF STAGE = I THEN DO;

N=N 1* EXP((A I— K2)* (T— T l) 1 ;
NCS (K2SM1)/(A1—K2 1*(EXP ((Al—K2)*(T—T1))—IEO)+K 1*Tl.
END;

ELSE IF STAGE 2 THEN DO;
N=(N2—Kl /A I)* EXP IA I* (T—T 2)) + K I /A I ;
NC=NCT2+ KI * (T—T2) ;
END ;

69

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - .5-—.—-



. .5 - 

ELSE IF STAGE=3 THEN DO;
NaN3*EXP ((A1—K3)*(T—T3));
NC= (K3*N3)/(K3—AI)*(l—EXP ((41—K3)*(T—T3)))+NCT3;
END;

NT =NC + N ;
IF T>PLOT_ TIME THEN DO; /* IT’S TIME TO RECOR D ANOTI-ER

SET OF POINTS FOR LATER
GRAPHING 5/

COUNT=COUNT.l;
N_ TAB (COUNT)

=NC ;
NT_ TA 8(COUNT)=NT ;
PLOT_TIME=PLOT..JIME+CGRAPHT;
END;

IF STAGE O THEN IF (N—Ni)* (LASTN—Nl)<=OEO THEN DO;
/5 THE ERRORS HAVE DECREASED TO Ni WH ICH CORRESPONDS TO

THE FIRST TRANSITION IN THE ERROR E QUAT ION. 5/
T 1 T ,
STAGE=1;
END;
ELSE ;

EL SE IF STAGE 1 THEN IF th—N2)* (LASTN—N2R=OEO THEN Do;
/* THE ERRORS HAVE UNFORTUNATELY INCREASED TO N2 WHICH

CORRESPONDS TO THE SECOND TRANSITION IN THE ERROR
FQIJATION .
T2=T;
NCT2=NC;
STAGE= 2;
END;
ELSE;

ELSE IF STAGEa2 THEN IF (N—N3 )~~(LASTN—N 3)<=OEO THEN Do;
/* THE ERRORS HAVE NOW DECREASED TO N3 WHICH CORRESPONDS

TO THE THIRD TRANSITION IN THE ERROR EQUATION. 5/
T3=T;
NCT3=NC;
STAGEa3;
END ;

LASTNaN;
END LOOP;
CALL PRINTGRAPH;
PUT SKIP DATA (T1 ,T2 ,T3) ;
END CA SE 3;



[.5 

-,5--

~~ 

5 5 . 5  . - - 5  - . •5 - .~ ____________________

(SIZE):
PRINT~ RAPH:PROC ;DECLARE I , REDUCTION_ FACTOR FLOAT ;
DECLARE BIG;
DECLARE PRINTLINE CHAR (80);
DECLA RE (FLOOR,SUBSTR) BUILTIN;
/* FIND MAX OF AR RAY NT_ TAB 5/
B
DO 1=0 TO FLOO R( FIN/ CG RAPHT ) ;
IF NT_TAB (1)>BIG THEN 8IGaNT_ TA BC I);
END;
ON SIZE SYSTEM;
ON SUBSCRIPTRANGE SNA P BEGIN; PUT DATA; STOP END;
ON STRINGRANGE SNA P BEGIN; PUT DATA; STOP; END ;
REDUCTI ON_FACTOR =50/BIG;
(SIZE): PUT EDIT ((I/REDUCTION_ FACTOR
no i= 0 TO 100 BY 10 ))(COL(14),F(7,2), 1OF (1O,2));
PUT EDIT ((6)’-~’ t I ’ I ’ , ((9 )-I I ’I’ DO ~ = 1 TO 10))

(CO 1(14),A,IOA (l0));
PRINTLINE= ’ ‘;
SUBSTR (PRINTLINE,REDUCT ION_FACT OR*N_TAB (O)+1,l)=’N’;
SUBSTR (PRINTLINE,REDUCT ION_FACT OR*NC_TAB (O)+1,i)= ’C’;
SUBSTR (PRINTLINE,REDUCTION_FACTOR*NT...TAB (O1+l,l)= ’T’;
PUT SKIP (O) EDIT (PRINTLINE)(COL(20),A);
DO 1=1 TO COUNT ;
PRINTLINE =’ ‘;
SU8STR (PR INTLINE , 1,1) x’ j ’  ;
SUBSTR (PRINTLINE ,REDUCT ION_FACT OR*N_TAB (I) +1, 1) ‘= ‘ N’ ;
SUBSTR(PRINTLINE ,kEDUCT1ON_ FACT OR*NC_ T A B ( I ) +1,I)=’C’;
SUBSTR (PRINTLINE ,REDUCTION_FACTOR*NT _TAB (I)+1,l)= ’T’;
IF MOD (I,lO)=0 THEN PUT EDIT (t*DGRAPHT,PR INTLINE )

(COL(9),F(lO,2) ,X (1) ,A) ;
ELSE
PUT EDIT (PRINTLINE )(COL(20),A);
END;
PUT PAGE;
PUT EDiT (‘N’,’NC ’,’NT’)
(COL (1O) ,3A( 10))
((N_TAB (KK),NC_TAB (KK ),NT_TAB (K K) 00 K K O  TO COUNT))
(C01(8),3F(LO,2)) ;
RETURN;
END PkINTGRAPH;
END MODELS ;

.5- —- ,  
‘ - -.5’ , ~~~~~~~~~ J



~TTI

CASE 1

N O a l D O  NP a 125 N1 = 25
Al = 0.125 A lP = 0.0350 1(1 = 10
KIP = 12.5 1(2 = 0.150 Dl = 0.100DGRAPHT = 1 FIN = 50

NUMBER OF ERRORS

0.00 45.23 90.47 135.70 180.94 226.17
~~~~~~~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ I ~~~~~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~ II C  N T

I C N I
I C N T
I C N I

o I C N I
Z I C N T

I C N T
O I C N I

I CN I
~~~1O.O O l  N C

I N C I
I N C IO I N C T
I N C T

Z I N C IO I N C TI N C TZ I N C T
20.00 1 N C T

I N  C T
I N  C T
I N  C T
i N Fig. AZ. 11 Computer Printout c T
I N  for Case l C T
IN C T
IN C T
IN CT
IN CT

30.00 IN CTIN CT
N CT
N CT

72

—.5-5 -- 5 - 5 - 5 -  . ,55-’5~~ 5 5- 55’ 5- -, - -



- ‘ ‘5-” ” ‘-“5- S - .5-, ‘“5- 
“5“~.“. ~~ 5-5_~~J5~~•& 

~~~ 5-5-1~~~~~~’ ‘

- - .‘ - -.—--~~~
-

~~~~~~~

CASE 2

NO = 100 NI, = 25 4~ = 0.0250
1(1 = 10 1(2 = 0.150 DT = 0.100
FIN = 50 OGRAPKT a

NUMBER OF ERRORS

0.00 23.99 47.99 71.98 c5.97 119.97
‘ ~~~~~~~~~~ ~ T ~~~~~~~~~~~~~~ 

~~~~~~~~~ ‘ ‘~~~~~‘ I ~~~~~~~ ‘‘ ~~~~~~~~~~~~~~ 1 .‘ ‘~~~ 
‘
~~~~‘ I ‘ ~~~~‘‘‘‘ ~~~~~~~~ I ‘ ~~~~‘ ‘

I C N T
C N I

I C N I
C N T

0 I C N  I
I N C T
I N C I
I N C I
I N C I

~~ 1O.OO I N C I
I N C T
I N C I

N C I
I N C T
I N C I
I N C I
I N  C T

Z I N  C T
I N  C T

~~2O .O 0IN 
c T

I N  C T
I N  C T
IN C T
IN Fig. AZ. 12 Computer Printout CT

for Case 2

IN CT
N CT
N

30.00 N I
N
N T
N
N

I
L_ - .5.5- . 5 ~~~~ .5 . -5-—.~~~~~~~~~~~~- ~~~~_~~~~~~~~5--55- _-.5 —~~ ..—

-.
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


.5-,.- - —.5”—-.~~-5--5’-.5-. ‘“‘ _______________
.5 .

CASE 3

NO = 100 Ni = 25 N2 = 28
N3 = 15 Al = 0.0250 1(1 a 10
1(2 = 0.0050 K3 = 0.150 DT = 0.100
FIN = 50 DGRAPHT = I

NUMBER OF ERRORS

0.00 24.54 49.08 73.62 8.l6 122.71
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I ~- — - ~—‘—~—‘—~—.I ~~~~~~~~~~~~~~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~~~~~~ I ~~~

‘
~~ —‘

I C N I
I C N I
I C N I

C N I
o I C N I
z I N C I

I N C I
0 I N C I

I N C I

~~ I0.O0 I N C
I N C T
I N C I

O I N C T
I N C I
I N C T

Z I N C I
O I N C I

I N C I
Z I N C I
20.00 1 N C I

I N C T
I N  C I

Fig. AZ. 13 Computer Printout ~ Sr

IN for Case 3 C T
(N C T
IN CT

CI
CT

~O.GQ IN CT
N CT

T

• I

74



- ‘---5.—’- ~~--.- . - —.----, -—,—-- -- ‘.5----- - . —-5.--—-- - .5’

REFERENCES

[. 11 Ma r tin L. Shooman, “Probabilistic Models for Software Reliability
Preclictj on,Conference on Statistical Methods for the Evaluation of
Computer System Performance, Brown University, Nov. 1971,
Frieberge r edition, Academic Press, N. Y. C.

[.21 Z. Jelinski and P. B. Moranda, “Software Reliability Research, ”published in Statistical Computer Performance Evaluation, 1972,
Frieberge r edition, Academic Press, New York.

1 31 Martin L. Shooman, “Ope rational Testing and Software Reliability
1.: Estimation During Program Development, ” 1973 , IEEE Symposium

on Compute r Software Reliability, New York City, April 30-May 2,
1973.

f 41 Martin L. Shoot-nan, e t al , unpublished memorand a on Error  Gene-
ration Models , Bell Labora tories , March 1973.

F 5] John I). Musa, “A Theory of Software Reliability and Its Applica-
tions, ” IEEE Transactions on Software Engineering, Vol. SE-I ,
No. 3, Sept. 1 975.

[ 6] M. L, Shooma n and M. I, Boisky, “Type s, Distributions and Test and
Correction Time s for Programming Errors, “ Proceedings, 1975
Inte rnational Conference on Reliable Software, Los Angele s, April
2t r23 ,  1975.

[ 7] J. Dickson, J. Hesse, A. Kientz, and M. Shooman, “Quantitative
Analysis of Software Reliability, “ 1972  Annua l Reliability Symposium
Proceedings, IEEE, January 1972.

[ 8] F. Akiyama, “An Example of Software System Debugging, u IFIP
Congress 1971, Ljubljana, Yugoslavia, August 1971.

[ 9] Frederick P. Brook s, Jr. , “How doe s the project get to  be a year
late? -- One day at a time, “ Datamation , Decembe r 1974.

( 10] Daniel Allen Rankin, “A Model of the Cost of Software Development forthe Apollo Spacecraft Computer, ” Submitte d in pa rtial fulfillme nt of
the requirements for the degree of Maste r of Science at the “Massach-
usetts Institu te of Technology, ” June 1972.

[111 Martin L. Shooman, “Probabilistic Reliability; An Engineering Ap-
proach, “ McGraw-Hill, I 968.

75

--- 5’ .5 - - -- — ... -‘--- - — - . .5 



METRIC SYSTEM

BASE UNITS:
Quantity - tJnIt SI Sy~ boL Fonnula

length metre m
mass ki logram kg
time second $

electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous Intensity candela cd

SUPPLEMENTARY UNITS;
plane angle radian rad
solid angle steradian Sr

D13.IVEI) UNITS:
Acceleration metre per second squared ... mis
activity (of a radioactive sourcel disintegration per second ... (disintegration)/s
angular acceleration radian per second squared ... rsd/s
angular velocity radian per second ... rad/s
ares square metre ... m
density kilogram per cubic metre ... kglm
electric capacitance farad F A..!’!
electrical conductance siemens S AN
electric field strength volt ,ier metre .. . Vim
electric inductance henry H V.8/A
electric potential difference volt V WIA
electric resistance ohm V/A
electromotive force volt V WIA
energy joule J N.m
entropy joule per kelvin ... J!K
force newton N kg-mis
frequency hertz Hz (cycleys
illuminance lux lx lm/m
luminance candela per square metre ... cd/rn
luminous flux lumen Im cd-sr
magnetic field strength ampere per metre ... A/m
magnetic flux weber Wb V.a
magnetic flux density tesla T Whim
magnetomotive force amp ere A
power watt W Jls
pressure pascal Pa Nlm
quantity of electricity coulomb C A-s
quantity of heat joule I N.m
radiant intensity watt per steradian ... W!sr
specific hea t joule per kilogram-kelvin ... J!kg-K
stress pascal Pa N/rn
thermal conductivity watt per metre-kelvin ... W/rn K
velocity metre per second ... rn/s
viscosity, dynamic pascal-second ... Pa-s
viscosity, kinematic square metre per second ... rn/s
voltage volt V WIA
volume cubic metre ... m
wavenumbei- reciprocal metre ... (wave)Im
work joule I N-rn

SI PREFIXES:

j~~iltip lication Factors Prefi x SI Symbol

1 000 000 000 000 = m h z  t,,ra
I 000 000 000 = l0~ gigs

1 000 000= 10 ’ meg. M
1 000~~~1V’ kilo k

100 102 hecto h
10 = lOl deka da

0.1 = 1 0 ’  dad ’ d
0.01 = 10’~ r efltl

0.001 i 0 ’’  mliii  m
(1.000 001 = 10 • micro

0.0(1(1 000 001 = 10’s  flaflo fl
0.0(X) 0(1(1 000 001 = 11) 5 -12 plc()

0.000 000 000 Q00 001 = 10— ” fendo
0.000 000 000 (KIt) (1(1(1001 1 0”  alto Is

To be avoided where posaible.
-‘U.S. GOVEONMEPI1’ POINTING OFFtCE lO77-~ 4-025 - iso

~~~~~~~~~~~~ -. 5 ’ - —


